Similarities and Differences between River Buffaloes and Cattle: Health, Physiological, Behavioral and Productivity Aspects

Authors

  • Aldo Bertoni Master's Program in Agricultural and Livestock Sciences [Maestría en Ciencias Agropecuarias], Universidad Autónoma Metropolitana (UAM), Xochimilco Campus, 04960, Mexico City, Mexico
  • Fabio Napolitano Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100, Potenza, Italy
  • Daniel Mota-Rojas Neurophysiology, Behavior, and Animal Welfare Assessment, Department of Animal Production and Agriculture (DPAA), Universidad Autónoma Metropolitana (UAM) Xochimilco Campus, 04960, Mexico City, Mexico
  • Emilio Sabia Faculty of Science and Technology, Free University of Bozen, 39100, Bolzano, Italy
  • Adolfo Álvarez-Macías Livestock Science Department, Universidad Nacional Autónoma de México (UNAM), Facultad de Estudios Superiores Cuautitlán, 54714, State of Mexico
  • Patricia Mora-Medina Ciencias Agrícolas, Universidad EARTH, Guácimo, 70602, Costa Rica
  • Armando Morales-Canela Ciencias Agrícolas, Universidad EARTH, Guácimo, 70602, Costa Rica
  • Jesús Berdugo-Gutiérrez Latin American Center for the Study of Buffalo, Colombia, National University of Colombia, Bogotá, 111321. Colombia
  • Isabel Guerrero- Legarreta Department of Biotechnology Food Science, Universidad Autónoma Metropolitana-Iztapalapa, (UAM-I), 09340, Mexico City, Mexico

DOI:

https://doi.org/10.6000/1927-520X.2020.09.12

Keywords:

Behavior, buffalo production, buffalo disease, cattle, river buffalo, dairy.

Abstract

The river buffalo is an emerging production species worldwide; indeed, it is overtaking other cattle as a producer of meat and milk in some countries. Though both species belong to the Bovidae family, they show significant anatomical, physiological, and behavioral differences due to their different phylogenetic positions. The river buffalo is a rustic animal that can benefit from low-quality, fibrous forages due to its digestive system, in contrast to beef cattle or dairy cows. Besides, the buffalo cow’s reproductive apparatus has fewer cervical muscle rings and a shorter vagina and cervix. This species has maintained its seasonal breeding pattern, also in contrast to Bos indicus and Bos taurus. Even though buffaloes have an inefficient thermoregulating system, scarce hair, and a thicker epidermis, they are more resistant to tropical weather conditions if water for wallowing is available than dairy cows, which in turn adapt better to temperate zones. Due to the morphology of the river buffalo’s mammary glands, they produce less milk, while their conical teats with narrower sphincters decrease predisposition to mastitis compared to dairy cows. Thus, the study of the anatomical and physiological differences among river buffalo, Bos Taurus, and Bos Indicus will allow the implementation of strategies to improve the former’s productivity while also increasing welfare levels according to the production system in which they are raised.

References

Guerrero-Legarreta I, Napolitano F, Cruz-Monterrosa R, Mora-Medina P, Braghieri A, et al. River buffalo meat production and quality. Appl Anim Sci 2020; 36: (In review). https://www.journals.elsevier.com/applied-animal-science

Mota-Rojas D, Orihuela A, Strappini-Asteggiano A, Cajiao-Pachón MN, Agüera-Buendía E, Mora-Medina P, et al. Teaching animal welfare in veterinary schools in Latin America. Int J Vet Sci Med 2018; 6: 131-40. https://doi.org/10.1016/j.ijvsm.2018.07.003 DOI: https://doi.org/10.1016/j.ijvsm.2018.07.003

Orihuela A, Mota-Rojas D, Velarde A, Strappini-Asteggiano A, Thielo de la Vega L, Borderas-Tordesillas F, et al. Invited review: environmental enrichment to improve behaviour in farm animals. CAB Reviews 2018; 13(059): 1-25. https://doi.org/10.1079/PAVSNNR201813059 DOI: https://doi.org/10.1079/PAVSNNR201813059

Mota-Rojas D, Broom DM, Orihuela A, Velarde A, Napolitano N, Alonso-Spilsbury M. Effects of human-animal relationship on animal productivity and welfare. J Anim Behav Biometeorol 2020; 8: 196-205. https://doi.org/10.31893/jabb.20026 DOI: https://doi.org/10.31893/jabb.20026

Napolitano F, Pacelli C, Grasso F, Braghieri A, De Rosa G. The behaviour and welfare of buffaloes (Bubalus bubalis) in modern dairy enterprises. Animal 2013; 7: 1704-13. https://doi.org/10.1017/S1751731113001109 DOI: https://doi.org/10.1017/S1751731113001109

Napolitano F, Mota-Rojas D, Berdugo GJA, González LM, Mora-Medina P, Ruíz BJD, et al. Dairy buffalo welfare at labour. Electronic Journal Ganaderia.com 2018.

Napolitano F, Serrapica F, Braghieri A, Masucci F, Sabia E, De Rosa G. Human-Animal Interactions in Dairy Buffalo Farms. Animals 2019; 9: 246. https://doi.org/10.3390/ani9050246 DOI: https://doi.org/10.3390/ani9050246

Napolitano F, Mota-Rojas D, Mora-Medina P, Berdugo-Gutiérrez J, Ruíz-Buitrago JD, Nava J, et al. Dairy Buffalo welfare and productivity. Entorno Ganadero 2019; 15: 38-48.

Napolitano F, Arney D, Mota-Rojas D, De Rosa G. Chapter 17. Reproductive technologies and animal welfare. In: Presicce G, editor. Reproductive technologies in animals. 1st. Ed. Italy: S&T Sciences/Elsevier Press; Amsterdam, The Netherlands 2020; p. 266. https://doi.org/10.1016/B978-0-12-817107-3.00017-5 DOI: https://doi.org/10.1016/B978-0-12-817107-3.00017-5

González-Lozano M, Mota-Rojas D, Orihuela A, Martínez-Burnes J, Di Francia A, Braghieri A, et al. Behavioral, physiological, and reproductive performance of buffalo cows during eutocic and dystocic parturitions. Appl Anim Sci 2020; 36: 407-22. https://doi.org/10.15232/aas.2019-01946 DOI: https://doi.org/10.15232/aas.2019-01946

Mota-Rojas D, Martínez-Burnes J, Napolitano F, Domínguez-Muñoz M, Guerrero-Legarreta I, Mora-Medina P, et al. Invited review: Dystocia: Factors affecting parturition in domestic animals. CAB Reviews 2020; 15(013): 1-14. https://doi.org/10.1079/PAVSNNR202015013 DOI: https://doi.org/10.1079/PAVSNNR202015013

Gutiérrez VA, Hurtado LN, Cerón-Muñoz M. Estimates of correction factors for lactation length, age and calving season in buffaloes of Colombian Atlantic Coast. Livest Res Rural Dev 2006; 18: http://www.lrrd.org/lrrd18/4/guti18050. htm

Mendes AJ, Lima F. Aspectos nutricionales del búfalo. Tecnología en Marcha, SeDAFP y Universidad Popular de la Chontalpa 2011; 516: 105-20.

García AR, Matos LB, Júnior L, de Brito J, Nahúm BDS, Araújo CVD, Santos AX. Physiological features of dairy buffaloes raised under shade in silvipastural systems. Pesq Agropec Bras 2011; 46: 1409-14. https://doi.org/10.1590/S0100-204X2011001000039 DOI: https://doi.org/10.1590/S0100-204X2011001000039

Romero SD, Pérez de León AA. Bubalinocultura en México: retos de industria pecuaria naciente. Logros y Desafíos de la Ganadería Doble Propósito 2014; 6: 15.

Crudeli GA, Konrad JL, Patiño EM. Reproducción en búfalas. 1st ed. Buenos Aires, Argentina: Moglia 2016.

USDA-United States Department of Agriculture. Milk Production In: Economics, Statistics and Market Information System (ESMIS) 2018: Avaliable from: https://usda.library. cornell.edu/concern/publications/h989r321c?locale=en

AIA- Associazione Italiana Allevatori. Controles Oficiales de productividad de la leche en Italia 2018: Avaliable from: http://bollettino.aia.it/Contenuti.aspx?CD_GruppoStampe=TB&CD_Specie=C4

Mattapallil MJ, Ali S. Analysis of conserved microsatellite sequences suggests closer relationship between water buffalo Bubalus bubalis and sheep Ovis aries. DNA Cell Biol 1999; 18: 513-19. https://doi.org/10.1089/104454999315231 DOI: https://doi.org/10.1089/104454999315231

Quintanilla-Quintero SR. Variación genética de una población colombiana de búfalo de agua (Bubalus bubalis) a través de un panel de microsatélites relacionados con la especie. Doctoral dissertation. Uppsala: Universidad Nacional de Colombia 2014.

Bertoni MA, Álvarez MAG, Mota-Rojas D. Desempeño productivo de los búfalos y sus opciones de desarrollo en las regiones tropicales. Soc Rural Prod Med Amb 2019; 38: 59-80.

Barboza JG. Bondades ecológicas del búfalo de agua: camino hacia la certificación. Rev Tec Marcha 2011; 24: 82.

Mota-Rojas D, Napolitano F, Bertoni MA, Gómez-Prado J, Mora-Medina P, Cruz-Monterrosa R, et al. Thermal biology in river buffalo in the humid tropics: neurophysiological and behavioral responses. Int J Vet Sci Med 2020; 8: (In review). https://www.tandfonline.com/toc/tvsm/current

Almaguer PY. El búfalo, una opción de la ganadería. Revista Electrónica de Veterinaria 2007; 8: 1-23. https://www.redalyc.org/articulo.oa?id=63612734014

Torres EG. Búfalos: una especie promisora. Sitio Argentino de Producción Animal 2009. www.produccion-animal.com.ar

Mota-Rojas D, De la Rosa G, Mora-Medina P, Braghieri A, Guerrero LI, Napolitano F. Dairy buffalo behaviour and welfare from calving to milking. CAB Reviews 2019(035); 14: 1-14. https://doi.org/10.1079/PAVSNNR201914035 DOI: https://doi.org/10.1079/PAVSNNR201914035

Puppo S, Grandoni F. Microflora ruminale in bufali e bovini alimentati con diete fibrose. In: Atti Convegno Miglioramento dell´efficienza produttiva e riproduttiva della specie bubalina. Potenza, Italy 1993; 307-21.

Jalaludin S, Ho YW, Abdullah N, Kudo H. Rumen microorganisms of the water buffalo. Buffalo J 1992; 8: 211-20.

Singh S, Pradhan K, Bathia SK. Relative ruminal microbial profile of cattle and buffalo fed wheat straw-concentrate diet. Indian J Anim Sci 1992; 62: 1197-1202.

Ranjhan S. Nutrition of river buffaloes in Southern Asia. In: Tulloh J, Holmes H, editors. Buffalo production. 1st ed. Asia 1992; pp. 111-34.

Fundora O, Quintana FO, González ME. Performance and carcass composition in river buffaloes fed a mixture of star grass, natural pastures and native legumes. Cuban J Agric Sci 2004; 38: 41.

El-Salam M, El-Shibiny. A comprehensive review on the composition and properties of buffalo milk. Dairy Sci Tech 2011; 91: 663-99. https://doi.org/10.1007/s13594-011-0029-2 DOI: https://doi.org/10.1007/s13594-011-0029-2

Riaño J, Narváez S. Composición, beneficios y enfermedades asociadas al consumo de leche de vaca. Revista Sthetic & Academy 2015; 13-24.

Neath KE, Del Barrio AN, Lapitan RM, Herrera JRV, Cruz LC, Fujihara T. Muroya S, Chikuni K, Hirabayashi M, Kanai Y. Protease activity higher in postmortem water buffalo meat than Brahman beef. Meat Sci 2007; 77: 389-96. https://doi.org/10.1016/j.meatsci.2007.04.010 DOI: https://doi.org/10.1016/j.meatsci.2007.04.010

Kandeepan G, Biswas S, Rajkumar RS. Buffalo as a potential food animal. Int J Livest Prod 2009; 1: 001-005.

Angulo RA, Noguera RR, Berdugo JA. The water buffalo (Bubalus bubalis) an efficient user of nutrients; aspects on fermentation and ruminal digestion. Livest Res Rural Dev 2005; 17: http://www.lrrd.org/lrrd17/6/angu17067.htm

Paul SS, Lal D. Nutrient requirements of buffaloes Azadpur- Dellhi: Satish Serial Publishing House 2010; 137.

Leao MI, Valadares RF, Coelho da Silva J F, Valadares Filho SDC, Torres RDA. Biometría do trato digestivo de bubalinos e bovinos. Rev Bras Zootec 1985; 14: 559-64.

Bartocci S, Amici A, Verna M, Terramoccia S, Martillotti F. Solid and fluid passage rate in buffalo, cattle and sheep fed diets with different forage to concentrate ratios. Livest Prod Sci 1997; 52: 201-08. https://doi.org/10.1016/S0301-6226(97)00132-2 DOI: https://doi.org/10.1016/S0301-6226(97)00132-2

Sideney J, Lyford J. Crecimiento y desarrollo del aparato digestivo de los Rumiantes. In: Chuch, D, editor. El rumiante, fisiología digestiva y nutrición. 1st ed. Zaragoza, España: Editorial Acribia S.A. 1993; pp. 47-68.

Pant HC, Roy A. Studies on the rumen microbial activity of buffalo and zebu cattle. Concentrations of micro-organisms and total and particulate nitrogen in the rumen liquor. Indian J Anim Sci 1970; 40: 600-9.

Homma H. Cellulase activities of bacteria in liquid and solid phases of the rumen digesta of buffaloes and cattle. Nihon Chikusan Gakkaihō. Anim Sci Technol (Jpn.) 1986; 57: 336-41. https://doi.org/10.2508/chikusan.57.336 DOI: https://doi.org/10.2508/chikusan.57.336

Franzolin R, Dehority BA. Comparison of protozoal populations and digestion rates between water buffalo and cattle fed an all forage diet. J Appl Anim Res 1999; 16: 33-46. https://doi.org/10.1080/09712119.1999.9706260 DOI: https://doi.org/10.1080/09712119.1999.9706260

Fundora O. Comportamiento de búfalos de agua (Bubalus bubalis) de la raza Buffalypso en sistemas de alimentación basados en pastoreo: quince años de investigaciones en el Instituto de Ciencia Animal. Rev Cubana Cienc Agr 2015; 49: 161-71.

Sane CR, Kaikini AS, Deshpande BR, Koranne GS, Desai VG. Study of biometry of genitalia of Jaffri buffalo-cows (Bos bubalis). Indian Vet J 1965; 42: 591.

Konrad JL. Inseminación artificial. In: Crudeli G, editor. Reproducción en Búfalas. 1st ed. Argentina: Ediciones Moglia 2016; 24: pp. 175-82.

De Rosa G, Grasso F, Winckler C, Bilancione A, Pacelli C, Masucci F, et al. Application of the Welfare Quality protocol to dairy buffalo farms: prevalence and reliability of selected measures. J Dairy Sci 2015; 98: 6886-96. https://doi.org/10.3168/jds.2015-9350 DOI: https://doi.org/10.3168/jds.2015-9350

Carvalho N, Gimenes L, Reis EL, Cavalcante AK, Mello JE, Nichi M, et al. Biometry of genital system from buffalo (Murrah) and bovine (Nelore) females. Revista Veterinaria IN Proceedings 2010; 21: 276-9.

Zicarelli L. Estacionalidad Reproductiva en Búfalas. In: Crudeli G, editor. Reproducción en Búfalas. 1st ed. Argentina: Ediciones Moglia 2016; pp. 73-94.

De Rosa G, Grasso F, Pacelli C, Napolitano F, Winckler C. The welfare of dairy buffalo. Ital J Anim Sci 2009; 8: 16. https://doi.org/10.4081/ijas.2009.s1.103 DOI: https://doi.org/10.4081/ijas.2009.s1.103

Muñoz-González JC, Huerta-Bravo M, Lara Bueno A, Rangel Santos R, Arana R. Production and nutritional quality of forages in conditions Humid Tropics of Mexico. Rev Mex Cien Agric 2016; 7: 3315-3327. https://doi.org/10.29312/remexca.v0i16.399 DOI: https://doi.org/10.29312/remexca.v0i16.399

Crudeli GA. Fisiología reproductiva del búfalo. Tecno Marcha 2011; 24: 74-81.

Sánchez JA, Romero MH, Suárez V. Reproductive seasonality of female buffalo (Bubalus bubalis). Rev Investig Vet Perú 2017; 28: 606-18. https://doi.org/10.15381/rivep.v28i3.13289 DOI: https://doi.org/10.15381/rivep.v28i3.13289

Gómez DAA, Muñoz MFC, Lugo AH. El búfalo como animal productor de carne: producción y mejoramiento genético. Rev Lasallista Invest 2007; 4: 43-9.

Martínez A, Ray JV, García López R, Benítez D, Guevara O. Comportamiento de algunos indicadores productivos y reproductivos del búfalo de río en la provincia Granma. Rev Cubana Cien Agric 2009; 43: 127-130.

Bavera GA. Búfalo de agua: razas. Cursos de Producción Bovina de Carne, FAV UNRC. Sitio Argentino de Producción Animal 2005.

Jainudeen MR, Hafez ESE. Reproductive cycles, Cattle and buffalo. In: Hafez SE, Hafez B, editors. Reproduction in farm animals. 7th ed. Philadelphia: Lippincott Williams & Vilson 2000; pp. 157-171. https://doi.org/10.1002/9781119265306.ch11 DOI: https://doi.org/10.1002/9781119265306.ch11

Barile VL. Reproductive efficiency in female buffaloes. Buffalo Production and Research. FAO Technical Series 2005; 77-108.

Saini MS, Dhanda OP, Singh N, Georgie GC. The effect of improved management on reproductive performance of pubertal buffalo heifers during summer. Indian J Dairy Sci 1998; 51: 250-3.

Bedoya C, Mira T, Guarín J, Berdugo J. Parámetros reproductivos del búfalo de agua (Bubalus bubalis) en el sur de Córdoba. Costa Norte Colombiana. In: VI World Buffalo Congress, The Buffalo: An alternative for Animal Agricultural in the Third Millenium: Venezuela 2002; pp. 271-75.

Anitha A, Rao KS, Suresh J, Moorthy PS, Reddy YK. A body condition score (BCS) system in Murrah buffaloes. Buffalo Bull 2011; 30: 79-96.

Di Palo R, Ariota B, Zicarelli F, De Blasi M, Zicarelli G, Gasparrini B. Incidence of pregnancy failures in buffaloes with different rearing system. Ital J Anim Sci 2009; 8: 21. https://doi.org/10.4081/ijas.2009.s2.619 DOI: https://doi.org/10.4081/ijas.2009.s2.619

Mozo J, Emre Y, Bouillaud F, Ricquier D, Criscuolo F. Thermoregulation: what role for UCPs in mammals and birds? Biosci Rep 2005; 25: 227-49. https://doi.org/10.1007/s10540-005-2887-4 DOI: https://doi.org/10.1007/s10540-005-2887-4

Blackshaw JK, Blackshaw AW. Heat stress in cattle and the effect of shade on production and behaviour: a review. Aust J Exp Agric 1994; 34: 285-95. https://doi.org/10.1071/EA9940285 DOI: https://doi.org/10.1071/EA9940285

Abdelatif AM, Alameen AO. Influence of season and pregnancy on thermoregulation and haematological profile in crossbred dairy cows in tropical environment. Glob Vet 2012; 9:334-40.

Berdugo-Gutiérrez J, Mota-Rojas D, Napolitano F, Nava J, Ruíz-Buitrago JD, González-López C, Guerrero-Legarreta I. Heat stress in river buffalo. Rev Entorno Ganadero 2019; 15: 26-36.

Ablas DDS, Titto EAL, Pereira AMF, Titto CG, Leme TDC. Behaviour of grazing water buffaloes depending on the availability of shade and water for imersion. Ciênc Anim Bras 2007; 8: 167-76.

Marai IFM, Haeeb AAM. Buffalo's biological functions as affected by heat stress — A review. Livest Sci 2009; 127: 89-94. https://doi.org/10.1016/j.livsci.2009.08.001 DOI: https://doi.org/10.1016/j.livsci.2009.08.001

Soroko M, Howell K, Zwyrzykowska A, Dudek K, Zielińska P, Kupczyński R. Maximum eye temperature in the assessment of training in racehorses: correlations with salivary cortisol concentration, rectal temperature and heart rate. J Eq Vet Sci 2016; 45: 39-45. https://doi.org/10.1016/j.jevs.2016.06.005 DOI: https://doi.org/10.1016/j.jevs.2016.06.005

Casas-Alvarado A, Mota-Rojas D, Hernández-Ávalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Martínez-Burnes J. Advances in infrared thermography: surgical aspects, vascular changes and pain monitoring in veterinary medicine. J Therm Biol 2020; (In review). DOI: https://doi.org/10.1016/j.jtherbio.2020.102664

Davidson AP, Stabenfeldt GH. Aspectos anatómicos de la glándula mamaria. In: Bradley G, editor. Fisiología Veterinaria. 5th ed. España: Elsevier Saunders 2014; pp. 408-459.

Thomas CS, Svennersten-Sjaunja K, Bhosrekar MR, Bruckmaier RM. Mammary cisternal size, cisternal milk and milk ejection in Murrah buffaloes. J Dairy Res 2004; 71:

-8. https://doi.org/10.1017/S0022029904000081 DOI: https://doi.org/10.1017/S0022029904000081

Espinosa Y, Ponce P, Capdevila J. Efecto de la estimulación con bucerro, oxitocina y manual sobre los indicadores de ordeño en búfalas. Rev Salud Anim 2011b; 33: 90-6.

Espinosa Y, Ponce P, Capdevila J, Riera M, Nieves L. Morfobiometría de la ubre en búfalas lecheras en rebaños del occidente de Cuba. Rev Cient FCV-LUZ 2011a; 21: 533-8.

Riera-Nieves M, Rodríguez-Márquez JM, Perozo-Prieto E, Rizzi R, Pedron, O. Comparison of morphological traits of teats in three dairy breed. Rev Cient FCV-LUZ 2006; 16: 315-24.

Caria M, Murgia L, Pazzona A. Effects of the working vacuum level on mechanical milking of buffalo. J Dairy Sci 2011; 94: 1755-61. https://doi.org/10.3168/jds.2010-3134 DOI: https://doi.org/10.3168/jds.2010-3134

Caria M, Boselli C, Murgia L, Rosati R, Pazzona A. Effect of vacuum level on milk flow traits in Mediterranean Italian buffalo cow. Ital J Anim Sci 2012; 11:e25. https://doi.org/10.4081/ijas.2012.e25 DOI: https://doi.org/10.4081/ijas.2012.e25

Roulin A, Heeb P. The immunological function of allosuckling. Ecol Lett 1999; 2: 319-24. https://doi.org/10.1046/j.1461-0248.1999.00091.x DOI: https://doi.org/10.1046/j.1461-0248.1999.00091.x

Špinka M. How important is natural behaviour in animal farming systems? Appl Anim Behav Sci 2006; 100: 117-28. https://doi.org/10.1016/j.applanim.2006.04.006 DOI: https://doi.org/10.1016/j.applanim.2006.04.006

Engelhardt SC, Weladji RB, Holand Ø, Røed KH, Nieminen M. Allonursing in reindeer, Rangifer tarandus: a test of the kin-selection hypothesis. J Mammal 2016; 97: 689-700. https://doi.org/10.1093/jmammal/gyw027 DOI: https://doi.org/10.1093/jmammal/gyw027

Mora-Medina P, Napolitano F, Mota-Rojas D, Berdugo J, Ruiz-Buitrago J, Guerrero-Legarreta I. Imprinting, Sucking and allosucking behaviors in buffalo calves. J Buffalo Sci 2018; 7: 43-48. https://doi.org/10.6000/1927-520X.2018.07.03.2

Víchová J, Bartoš L. Allosuckling in cattle: gain or compensation? Appl Anim Behav Sci 2005; 94: 223-35. https://doi.org/10.1016/j.applanim.2005.02.015 DOI: https://doi.org/10.1016/j.applanim.2005.02.015

Roulin A. The Neuroendocrine Function of Allosuckling. J Ethol 2003; 109: 185-95. https://doi.org/10.1046/j.1439-0310.2003.00870.x DOI: https://doi.org/10.1046/j.1439-0310.2003.00870.x

Paranhos da Costa MJR, Albuquerque LG, Eler JP, de Vasconcelos Silva JAI. Suckling behaviour of Nelore, Gir and Caracu calves and their crosses. Appl Anim Behav Sci 2006; 101: 276-87. https://doi.org/10.1016/j.applanim.2006.02.006 DOI: https://doi.org/10.1016/j.applanim.2006.02.006

Murphey RM, Paranhos da Costa MJR, Gomes da Silva R, de Souza R. Allonursing in river buffalo, Bubalis bubalis: nepotism, incompetence, or thievery? Anim Behav 1995; 49: 1611-6. https://doi.org/10.1016/0003-3472(95)90083-7 DOI: https://doi.org/10.1016/0003-3472(95)90083-7

Paranhos da Costa MJR, Simplicio de Oliveira JF, Schmidek WR. Suckling and Allosuckling in river buffalo calves and its relation with weight gain. Appl Anim Behav Sci 2000; 66: 1-10. https://doi.org/10.1016/S0168-1591(99)00083-0 DOI: https://doi.org/10.1016/S0168-1591(99)00083-0

Dalto AC, Bandarra PM, Pavarini SP, Boabaid FM, de Bitencourt AP G, Gomes MP, Chies J, Driemeier D, da Cruz CEF. Clinical and pathological insights into Johne′ s disease in buffaloes. Trop Anim Health Prod 2012; 44: 1899-1904. https://doi.org/10.1007/s11250-012-0154-9 DOI: https://doi.org/10.1007/s11250-012-0154-9

Andriolo A, Paranhos da Costa MJR, Schmidek WR. Suckling behaviour in water buffalo (Bubalus bubalis): development and individual differences. Rev Etol 2001; 3: 129-36.

Stear MJ, Bishop SC, Mallard BA, Raadsma H. The sustainability, feasibility and desirability of breeding livestock for disease resistance. Res Vet Sci 2001; 71: 1-7. https://doi.org/10.1053/rvsc.2001.0496 DOI: https://doi.org/10.1053/rvsc.2001.0496

Frias M, Landi H, Montes D, Parodi FP. Análisis comparativo de la salud y costo en el período vaca parida en rodeos lecheros. InVet 2011; 13: 17-23.

Hogeveen H, Huijps K, Lam TJGM. Economic aspects of mastitis: new developments. New Zealand Vet J 2011; 59: 16-23. https://doi.org/10.1080/00480169.2011.547165 DOI: https://doi.org/10.1080/00480169.2011.547165

Mota-Rojas D, Napolitano F, Martínez-Burnes J, De Rosa G, Braghieri A, Orihuela MA. Distocia en búfalas: Complicaciones obstétricas. Agro Meat 2019b; 5: 1-10.

El-Ashker M, Gwida M, Monecke S, El-Gohary F, Ehricht R, Elsayed M, Paul A, El-Fateh M, Maurischat S. Antimicrobial resistance pattern and virulence profile of S. aureus isolated from household cattle and buffalo with mastitis in Egypt. Vet Microbiol 2020; 240: 108535. https://doi.org/10.1016/j.vetmic.2019.108535 DOI: https://doi.org/10.1016/j.vetmic.2019.108535

Lozano C, Gharsa H, Ben Slama K, Zarazaga M, Torres C. Staphylococcus aureus in animals and food: Methicillin resistance, prevalence and population structure. A review in the African continent. Microorganisms 2016; 4: 12. https://doi.org/10.3390/microorganisms4010012 DOI: https://doi.org/10.3390/microorganisms4010012

El-Ashker M, Gwida M, Tomaso H, Monecke S, Ehricht R, El-Gohary F, Hotzel H. Staphylococci in cattle and buffaloes with mastitis in Dakahlia Governorate, Egypt. J Dairy Sci 2015; 98: 7450-9. https://doi.org/10.3168/jds.2015-9432 DOI: https://doi.org/10.3168/jds.2015-9432

Sollecito N, Lopes L, Leite R. Somatic cell count, profile of antimicrobial sensitivity and microrganisms isolated from buffalo mastitis: A breaf review. Rev Bras Med Vet 2011; 33: 18-22.

Ybañez AP, Ybañez RHD, Armonia, RKM, Chico JKE, Ferraren KJV, Tapdasan EP, Salces CB, Maurillo BCA, Galon EMS, Macalanda AMC, Moumouni PFA, Xuan X. First molecular detection of Mycoplasma wenyonii and the ectoparasite biodiversity in dairy water buffalo and cattle in Bohol, Philippines. Parasitol Int 2019; 70: 77-81. https://doi.org/10.1016/j.parint.2019.02.004 DOI: https://doi.org/10.1016/j.parint.2019.02.004

Benitez D, Cetrá B, Florin-Christensen M. Rhipicephalus (Boophilus) microplus ticks can complete their life cycle on the water buffalo (Bubalus bubalis). J Buffalo Sci 2012; 1: 193-7. https://doi.org/10.6000/1927-520X.2012.01.02.11 DOI: https://doi.org/10.6000/1927-520X.2012.01.02.11

Motta-Giraldo JL, Waltero-García I, Abeledo-García MA, Miranda I, Campos-Pipaon R. Main reproductive disorders in buffaloes and cows in mixed herds and of one species in the department of Caquetá, Colombia. Rev Med Vet Zoot 2014; 61: 228-40. https://doi.org/10.15446/rfmvz.v61n3.46870 DOI: https://doi.org/10.15446/rfmvz.v61n3.46870

Wells SJ, Trent AM. Clinical lameness in dairy cows in the Midwestern United States. A Preliminary Report. Bov Pract Proceed 1999; 23: 148-9. DOI: https://doi.org/10.21423/aabppro19906817

García-Bracho D, Hahn M, Pino D, Vivas I, Leal M, Clerc K. Functional trimming at the dry off period to prevent foot diseases in confined dairy cows at the tropical area. Rev Cient FCV-LUZ 2009; 19: 147-52.

Weaver AD. Advance in Bovine Digital Diseases. Bov Pract Proceed 1993; 27: 23-7. DOI: https://doi.org/10.21423/bovine-vol1993no27p23-27

Mitat VA. Antecedentes y perspectivas de la actividad bufalina en el trópico. Rev Tecnol Marcha 2011; 24: 121.

López AR. Perspectivas de la crianza del búfalo de agua (Bubalus bubalis) en la Amazonía Ecuatoriana. Rev Amazónica: Cien Tec 2013; 2: 19-30. DOI: https://doi.org/10.59410/RACYT-v02n01ep03-0023

Arriaga-Jordán CM, Albarrán-Portillo B, Espinoza-Ortega A, García-Martínez A, Castelán-Ortega OA. On-farm comparison of feeding strategies based on forages for small-scale dairy production systems in the highlands of central Mexico. Exp Agric 2002; 38: 375-88. https://doi.org/10.1017/S0014479702000418 DOI: https://doi.org/10.1017/S0014479702000418

Espinoza-Ortega A, Espinosa-Ayala E, Bastida-Lopez J, Castañeda-Martinez T, Arriaga-Jordán CM. Small-scale dairy farming in the highlands of central Mexico: Technical, economic and social aspects and their impact on poverty. Exp Agric 2007; 43: 241-56. https://doi.org/10.1017/S0014479706004613 DOI: https://doi.org/10.1017/S0014479706004613

Tinoco-Magaña JC, Aguilar-Pérez CF, Delgado-León R, Magaña-Monforte JG, Ku-Vera JC, Herrera-Camacho J. Effects of energy supplementation on productivity of dual-purpose cows grazing in a silvopastoral system in the tropics. Trop Anim Health Prod 2012; 44: 1073-78. https://doi.org/10.1007/s11250-011-0042-8 DOI: https://doi.org/10.1007/s11250-011-0042-8

Mora-Medina P, Berdugo-Gutiérrez J, Mota-Rojas D, Ruiz-Buitrago J, Nava AJ, Guerrero-Legarreta I. Behaviour and welfare of dairy buffaloes: pasture or confinement? J Buffalo Sci 2018; 7: 43-8. https://doi.org/10.6000/1927-520X.2018.07.03.2 DOI: https://doi.org/10.6000/1927-520X.2018.07.03.2

Rojo RR, Vázquez AJF, Pérez HP, Mendoza MGD, Salem AZM, Albarrán BP, González RA, Hernández MJ, Rebollar RS, Cardoso JD, Dorantes CEJ, Gutiérrez C. Dual purpose cattle production in Mexico. Trop Anim Health Prod 2009; 41: 715-21. https://doi.org/10.1007/s11250-008-9249-8 DOI: https://doi.org/10.1007/s11250-008-9249-8

García-Martínez A, Albarrán-Portillo B, Avilés-Nova F. Dinámicas y tendencias de la ganadería doble propósito en el sur del Estado de México. Agrociencia 2015; 49: 125-39.

Sabia E, Napolitano F, Claps S, De Rosa G, Braghieri A, Pacelli C., 2018. Dairy buffalo life cycle assessment as affected by heifer rearing system. J Cleaner Prod 192: 647-55. https://doi.org/10.1016/j.jclepro.2018.04.158 DOI: https://doi.org/10.1016/j.jclepro.2018.04.158

Downloads

Published

2020-06-26

How to Cite

Bertoni, A. ., Napolitano, F. ., Mota-Rojas, D. ., Sabia, E. ., Álvarez-Macías, A. ., Mora-Medina, P. ., Morales-Canela, A. ., Berdugo-Gutiérrez, J. ., & Guerrero- Legarreta, I. . (2020). Similarities and Differences between River Buffaloes and Cattle: Health, Physiological, Behavioral and Productivity Aspects. Journal of Buffalo Science, 9, 92–109. https://doi.org/10.6000/1927-520X.2020.09.12

Issue

Section

Articles

Most read articles by the same author(s)