Study in Cationic Micellar Effect on Photogalvanics: Cetyl Pyridinium Chloride- Ethylene Diamine Tetra Acetic Acid – Safranine O System for Solar Energy Conversion and Storage
DOI:
https://doi.org/10.6000/1929-6002.2017.06.02.4Keywords:
Photogalvanic cell, Storage capacity, Conversion efficiency, Photocurrent, Fill FactorAbstract
The Object of the Study is to observe the enhancement on photogalvanics in presence of cationic micellar species i.e. cetyl pyridinium chloride in photogalvanic cell for solar energy conversion and storage. The photogalvanic system provides the higher values in maximum current value 225.0 µA as compare to 15.0 µA in without micellar system. The power at power point of the cell is 28.12 µW as compare to 3.00 µW and storage capacity of cationic micellar system is 25.0 min. as compare to 11.0 minutes in without micellar photogalvanic cell. The conversion efficiency and i-V characteristics of the cells have been determined and a mechanism has also been proposed for the generation of electricity in photogalvanic cells having cationic micellar species and without micellar system.
References
[1]Becquerel AE. Memoire sur les effects eletriquqes products sous l’influence des rayons solaires. C R Acad Sci 1839; 9: 561-7.
[2]Rideal EK, Williams EG. The action of light on the ferrous ferric iodine iodide equilibrium. J Chem Soc 1925; 258.https://doi.org/10.1039/CT9252700258
[3]Rabinowitch E. The photogalvanic effect I the photochemical properties of the thionine- iron system. J Chem Phys 1940; 8: 551-9.https://doi.org/10.1063/1.1750711
[4]Rabinowitch E. The photogalvanic effect II. the photochemical properties of the thionine –iron system. J Chem Phys 1940; 8: 560-6.https://doi.org/10.1063/1.1750712
[5]Weber K, Metijevic E. Inhibition of photogalvanic phenomena. Rect Trav Chem Pays. Bas et de la B ELG 1951; 70: 481-94.
[6]Potter AE, Thaller LH. Efficiency of some iron –thionine photogalvanic cells. Solar Energy 1959; 3: 1-7.https://doi.org/10.1016/0038-092X(59)90001-5
[7]Gomber R. Photogalvanic cells. Eletrochim Acta 1975; 20: 13-20.https://doi.org/10.1016/0013-4686(75)85038-9
[8]Clark WDK, Eckert JA. Photogalvanic cells. Solar Energy 1975; 17: 147-60.https://doi.org/10.1016/0038-092X(75)90052-3
[9]Kaneko M, Yamada A. Photopotential and photocurrent induced by tolusafranine-ethylene diamine tetra acetic acid system. J Phys Chem 1977; 81: 1213-15.https://doi.org/10.1021/j100527a020
[10]Osif TL, Lichtin NN, Hoffman MZ. Kinetics of dark back reaction of products of the photoreduction of triplet thionine by iron(ll) evidence for association of leucothionine and semithionone with iron (lll). J Phys Chem 1978; 82: 1778-84.https://doi.org/10.1021/j100505a003
[11]Riggs WM, Bricker CE. Irreversible photogalvanic cell using iron (III) and iron (II) oxalate. J Electrochem Soc 1968; 115: 935-6.https://doi.org/10.1149/1.2411476
[12]Sinha A. Photoelectrochemical devices –a multipurpose system. Bull Mater Sci 1988; 10: 277-81.https://doi.org/10.1007/BF02744298
[13]Memming R. Solar energy conversion by photoelectrochemical processes. Eletrochim Acta 1980; 25: 77-88.https://doi.org/10.1016/0013-4686(80)80054-5
[14]Ameta SC, LodaS, Ameta R. Use of the thionine-EDTA system in photogalvanic cells for solar energy conversion. J Photochem Photobiol A: Chem 1989; 48: 81-6.https://doi.org/10.1016/1010-6030(89)87092-3
[15]Gangotri KM, Lal C. Use of mixed dyes in photogalvanic cells for solar energy conversion and storage, EDTA-toluidine blue and azur B system. Energy Sources 2001; 19: 981-7.
[16]Lal C, Gangotri KM. Energy conversion and storage potential of photogalvanic cell based on mixed dyes system, ethylene diamine tetra acetic acid-toluidine blue-thionine. Environ Prog Sustain Energy 2011; 30: 754-61.https://doi.org/10.1002/ep.10524
[17]Archer MD, Ferreira MIC. Photogalvanic cells and effects Solar Energy 1981; 3: 201-28.
[18]Hann RA, Read C, Rosseinsky DR, Wasseil P. Photogalvanic output from cells containing organic dye. Nature 1973; 244: 126-7.https://doi.org/10.1038/physci244126a0
[19]Aliwi SM, Al-Daghstany IK, Naman SA. Photogalvaic effect in thionine-vanadium (III)chloride system. J Sol Energy Res 1983; 1: 13-22.
[20]Singeghara K, Nishimura M Tsuchida E. Photo-induced electricity generated by thin layer photogalvanic cells containing thionine- and iron (II) salt. Bull Chem Soc Jpn 1977; 50: 3397-405.https://doi.org/10.1246/bcsj.50.3397
[21]Koli P. Solar energy conversion and storage: fast green FCF-fructose photogalvanic cell. Applied Energy 2014; 118: 231-7.https://doi.org/10.1016/j.apenergy.2013.12.035
[22]Koli P, Sharma U, Gangotri KM. Solar energy conversion and storage: rhodomine B-fructose photogalvanic cell. Renew Energy 2012; 37: 250-8.https://doi.org/10.1016/j.renene.2011.06.022
[23]Yamada E. Kaneko M, Tsuchida H. Transformation of light into electricity. Patent: JP 52092884 04 Aug 1977.
[24]Witzke B. Radiant energy converter having storage. Patent: US4118546A; 03 Oct 1978
[25]Deb SK. Energy storing photogalvanic cell having dielectric overcoating. Patent: US4115631, A; 19 Sep 1978.
[26]Gangotri KM, Bhimwal MK. Study the performance of photogalvanic cell for solar energy conversion and storage: toluidine blue-D xylose-NaLS system. Int J Energy Res 2011; 35: 545-52.https://doi.org/10.1002/er.1719
[27]Srivastava RC, Srinivasan R, Marwadi PR, Bhise SB, Mathur SS. Surfactant micelles for solar energy storage. Curr Sci 1982; 51: 1015-7.https://doi.org/10.1002/er.4440060306
[28]Bhowmik BB, Choudhuri R, Rohatgi Mukherjee KK. Dye –surfactant interaction and photogalvanic effect. Indian J Chem A 1987; 26A: 95-8.
[29]Dung MH, Kozak JJ. Efficiency of light-energy conversion in photogalvanic cells and water cleavage system. J Chem Phys 1982; 77: 3246-57.https://doi.org/10.1063/1.444201
[30]O’Regan B, Gratzel M. A low cost high –efficiency solar cell based on dye sensitized colloidal TiO2 film. Nature1991; 353: 737-40.https://doi.org/10.1038/353737a0
[31]Hoffman MZ, Lichtin NN. Photochemical determination of the efficiency of photogalvanic conversion of solar energy. Solar Energy 1979; 153-87.
[32]Albery WJ, Archer MD. Optimum efficiency of photogalvanic cells for solar energy conversion. Nature 1977; 270: 399-402.https://doi.org/10.1038/270399a0
[33]Kamat PV, Karkhanavala MD, Moorthy PN. Enhancement of the power output of the photogalvanic cells. Indian J Chem A 1977; 15A: 342-4.
[34]Gangotri P, Koli P. Study of the enhancement on photogalvanics: solar energy conversion and storage in EDTA- safranine O – NaLS system. Sustain Energy Fuels 2017; 1: 882-90.https://doi.org/10.1039/C7SE00083A
[35]Kettani MA, Conversion of solar energy into electricity. Solar Energy Eng.1977; 305: 477-98.https://doi.org/10.1016/B978-0-12-620850-4.50020-X
[36]Keller RA, Warner BE, Zalewski EF, Dyer P, Engleman R, Palmer BA. The machenism of photogalvanic effect in a hollow –cathode discharge. J Phys 1983; 44: 7-23.
[37]Boltan JR. The photochemical conversion and storage of solar energy an historical perspective. Sol Energy Mat Cells 1995; 38: 543-54.https://doi.org/10.1016/0927-0248(94)00208-8
[38]Gangotri P, Gangotri KM. Studies of the micellar effect on photogalvanics : solar energy conversion storage in EDTA-safranine O- NaLS system. Energy Sources Part A 2013; 35: 1007-16.https://doi.org/10.1080/15567030903077980
[39]Gangotri P, Gangotri KM. Studies of the micellar effect on photogalvanics: solar energy conversion storage in EDTA-safranine O- DSS sy stem. Int J Energy Res 2010; 34: 1155-63.https://doi.org/10.1002/er.1636
[40]Gangotri P, Gangotri KM. Studies of the micellar effect on photogalvanics: solar energy conversion storage in EDTA-safranine O- CTAB sy stem. Arab J Sc Engg 2010; 35: 19-28.
[41]Gangotri P, Gangotri KM. Studies of the micellar effect on photogalvanics: solar energy conversion storage in EDTA-safranine O- tween 80 system. Energy and Fuels 2009; 23: 2767-72.https://doi.org/10.1021/ef9000709
[42]Malviya A, Solanki PP. Photogalvanics: a sustainable and promising device for Solar energy conversion and storage. Renew Sus Energy Review 2016; 59: 662-691.https://doi.org/10.1016/j.rser.2015.12.295
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Journal of Technology Innovations in Renewable Energy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .