Modeling and Global Sensitivity Analysis of a Solar Powered Air Cooling System Using Liquid Desiccant

Authors

  • Hery Tiana Rakotondramiarana Institute for the Management of Energy (IME), University of Antananarivo, Po Box 566, Antananarivo 101, Madagascar
  • Sambatra Hagatiana Andrianomena Institute for the Management of Energy (IME), University of Antananarivo, Po Box 566, Antananarivo 101, Madagascar
  • Ando Ludovic Andriamamonjy Institute for the Management of Energy (IME), University of Antananarivo, Po Box 566, Antananarivo 101, Madagascar
  • Minoson Sendrahasina Rakotomalala Institute for the Management of Energy (IME), University of Antananarivo, Po Box 566, Antananarivo 101, Madagascar

DOI:

https://doi.org/10.6000/1929-6002.2013.02.04.4

Keywords:

Solar air conditioner, open cycle, lithium chloride, simulation, global sensitivity analysis, FAST method, complex system

Abstract

Solar energy technology is an option for energy saving in building air conditioning. A theoretical investigation of an open cycle solar air cooling system using aqueous Lithium Chloride solution as liquid desiccant is presented in this paper. The purpose of this work is to analyze the influences of both internal loads and external forcing, on the studied system by developing a computational code related to its mathematical model. The simulation results justify the choice of the system design. Indeed, it was highlighted that the higher is the outdoor temperature; the better is the coefficient of performance (COP) of the system. Furthermore, a global sensitivity analysis of the system model, achieved using Fourier Amplitude Sensitivity Test method, allowed us to identify the most influential factors that were ranked in a decreasing order of their influence degree on the system COP. Hence, key factors to be controlled for improving the system overall performance are specified.

References

Öberg V, Goswami DY. A Review of liquid desiccant cooling. In Adv Sol Energy 1998; 12: 431-70.

Löf GOG. House heating and cooling with solar energy. In: Daniels F, Duffie JA, Eds. Solar Energy Research. Madison: University of Wisconsin Press 1955; pp. 33-46.

Kessling W, Laevemann E, Peltzer M. Energy storage in open cycle liquid desiccant cooling systems. Int J Refrig 1998; 21(2): 150-6. http://dx.doi.org/10.1016/S0140-7007(97)00045-5 DOI: https://doi.org/10.1016/S0140-7007(97)00045-5

Jain S, Dhar PL, Kaushik SC. Experimental studies on the dehumidifier and regenerator of a liquid desiccant cooling system. Appl Therm Eng 2000; 20(3): 253-67. http://dx.doi.org/10.1016/S1359-4311(99)00030-7 DOI: https://doi.org/10.1016/S1359-4311(99)00030-7

Pietruschka D, Eicker U, Huber M, Schumacher J. Experimental performance analysis and modeling of liquid desiccant cooling systems for air conditioning in residential buildings. Int J Refrig 2006; 29(1): 110-24. http://dx.doi.org/10.1016/j.ijrefrig.2005.05.012 DOI: https://doi.org/10.1016/j.ijrefrig.2005.05.012

Alizadeh S, Saman WY. An experimental study of a forced flow solar collector/regenerator using liquid desiccant. Sol Energy 2002; 73(5): 345-62. http://dx.doi.org/10.1016/S0038-092X(02)00116-0 DOI: https://doi.org/10.1016/S0038-092X(02)00116-0

Potnis SV. Development of dimensionless mass transfer correlations for packed bed liquid desiccant contactors [PhD dissertation]. Colorado State University 1994.

Löf GOG. Cooling with solar energy. Proceedings of congress of solar energy, Tucson, Arison 1955; pp. 171-89.

Camargo JR, Ebinuma CD, Silveira J. Thermoeconomic analysis of an evaporative desiccant air conditioning system. Appl Therm Eng 2003; 23: 1537-49. http://dx.doi.org/10.1016/S1359-4311(03)00105-4 DOI: https://doi.org/10.1016/S1359-4311(03)00105-4

Riffat SB, Zhu J. Mathematical model of indirect evaporative cooler using porous ceramic and heat pipe. Appl Therm Eng 2004; 24: 457-70. http://dx.doi.org/10.1016/j.applthermaleng.2003.09.011 DOI: https://doi.org/10.1016/j.applthermaleng.2003.09.011

Ali A, Vafai AK. An investigation of heat and mass transfer between air and desiccant film in parallel and counter flow channels. Appl Therm Eng 2004; 47: 1745-60. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.10.008 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2003.10.008

Yin Y, Zhang X, Chen Z. Experimental study on dehumidifier and regenerator of liquid desiccant cooling air conditioning system. Build Environ 2007; 42(7): 2505-11. http://dx.doi.org/10.1016/j.buildenv.2006.07.009 DOI: https://doi.org/10.1016/j.buildenv.2006.07.009

Fumo N, Goswami DY. Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration. Sol Energy 2002; 72(4): 351-61. http://dx.doi.org/10.1016/S0038-092X(02)00013-0 DOI: https://doi.org/10.1016/S0038-092X(02)00013-0

Oliviera AC, Afonso CF, Riffat SB, Doherty PS. Thermal performance of a novel air conditioning system using a liquid desiccant. Appl Therm Eng 2000; 20: 1213-23. http://dx.doi.org/10.1016/S1359-4311(99)00087-3 DOI: https://doi.org/10.1016/S1359-4311(99)00087-3

Yadav YK. Vapour-compression and liquid-desiccant hybrid solar space-conditioning system for energy conservation. Renew Energ 1995; 6: 719-23. http://dx.doi.org/10.1016/0960-1481(95)00009-9 DOI: https://doi.org/10.1016/0960-1481(95)00009-9

Henning H-M, Erpenbeck T, Hindenburg C, Santamaria IS. The potential of solar energy use in desiccant cycles. Int J Refrig 2001; 24: 220-9. http://dx.doi.org/10.1016/S0140-7007(00)00024-4 DOI: https://doi.org/10.1016/S0140-7007(00)00024-4

Khan A, Sulsona FJ. Modelling and parametric analysis of heat and mass transfer performance of refrigerant cooled liquid desiccant absorbers. Int J Energy Res 1998; 22: 813-32. http://dx.doi.org/10.1002/(SICI)1099-114X(199807)22:9<813::AID-ER403>3.0.CO;2-M DOI: https://doi.org/10.1002/(SICI)1099-114X(199807)22:9<813::AID-ER403>3.0.CO;2-M

Khan AY, Martinez JL. Modelling and parametric analysis of heat and mass transfer performance of a hybrid liquid desiccant absorber. Energ Convers Manage 1998; 39(10): 1095-12. http://dx.doi.org/10.1016/S0196-8904(97)00032-0 DOI: https://doi.org/10.1016/S0196-8904(97)00032-0

Kinsara AA, Al-Rabghia OM, Elsayedb MM. Parametric study of an energy efficient air conditioning system using liquid desiccant. Appl Therm Eng 1998; 18(5): 327-35. http://dx.doi.org/10.1016/S1359-4311(97)00037-9 DOI: https://doi.org/10.1016/S1359-4311(97)00037-9

Tu M, Ren CQ, Zhang LA, Shao JW. Simulation and analysis of a novel liquid desiccant air-conditioning system. Appl Therm Eng 2009; 29: 2417-25. http://dx.doi.org/10.1016/j.applthermaleng.2008.12.006 DOI: https://doi.org/10.1016/j.applthermaleng.2008.12.006

Younus Ahmed S, Gandhidasan P, Al-Farayedhi AA. Thermodynamic analysis of liquid desiccants. Sol Energy 1998; 62(1): 11-18. http://dx.doi.org/10.1016/S0038-092X(97)00087-X DOI: https://doi.org/10.1016/S0038-092X(97)00087-X

Gommed K, Grossman G. A Liquid Desiccant System for Solar Cooling and Dehumidification. ASME J Sol Energy Eng 2004; 126: 879-85. http://dx.doi.org/10.1115/1.1690284 DOI: https://doi.org/10.1115/1.1690284

Saudagar RT, Ingole PR, Mohod TR, Choube AM. A review of emerging technologies for solar air conditioner. Int J Innov Res Sci Eng Technol 2013; 2(6): 2356-9.

Sandoval EH, Anstett-Collin F, Basset M. Sensitivity study of dynamic systems using polynomial chaos. Reliab Eng Syst Safe 2012; 104: 15-26. http://dx.doi.org/10.1016/j.ress.2012.04.001 DOI: https://doi.org/10.1016/j.ress.2012.04.001

Delorme M, Six R, Berthaud S, et al., editor. La climatisation solaire [monograph on the internet]. Lyon (France): Actaes editions; 2004 [cited 2008 August 4]: Available from: http://enr.cstb.fr/file/rub23_doc82_1.pdf

Conde MR. Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design. Int J Therm Sci 2004; 43(4): 367-82. http://dx.doi.org/10.1016/j.ijthermalsci.2003.09.003 DOI: https://doi.org/10.1016/j.ijthermalsci.2003.09.003

Stabat P, Marchio D, Eds. HUMEDIA, Humidificateur par ruissellement à recirculation d'eau [monograph on the internet]. Paris: Ecole des Mines de Paris, Centre d’Energétique; 2001 [cited 2008 August 4]: Available from: http://www-cenerg.ensmp.fr/english/themes/syst/pdf/ modeles%20de%20composants/HUMEDIA_V1-1.pdf

ADEME. Techniques de rafraîchissement basse consommation [monograph on the internet]. France: Fiche OD; 2003 [cited 2008 August 4]: Available from: http://www2.ademe.fr/servlet/getBin?name=D81E8795D5A60FDAA2A71629E1DFB0AC1142439763686.pdf

Gicquel R. Systèmes énergétiques: Volume 3, Cycles avancés, systèmes innovants à faible impact environnemental. Paris (France): Presses des Mines 2009.

Beguin D. Climatisation solaire par machine à absorption [PhD dissertation]. University of Perpignan (France) 1983.

Matlab R2010a. High-performance numerical computation and visualization software, The Mathworks, Inc. 2010.

Rakotondramiarana HT, Andriamamonjy AL. Matlab automation algorithm for performing global sensitivity analysis of complex system models with a derived FAST method. J Co Mod 2013; 3(3): 17-56.

Gandhidasan P. A simplified model for air dehumidification with liquid desiccant. Sol Energy 2004; 76(4): 409-16. http://dx.doi.org/10.1016/j.solener.2003.10.001 DOI: https://doi.org/10.1016/j.solener.2003.10.001

Downloads

Published

2013-11-28

How to Cite

Rakotondramiarana, H. T., Andrianomena, S. H., Andriamamonjy, A. L., & Rakotomalala, M. S. (2013). Modeling and Global Sensitivity Analysis of a Solar Powered Air Cooling System Using Liquid Desiccant. Journal of Technology Innovations in Renewable Energy, 2(4), 327–339. https://doi.org/10.6000/1929-6002.2013.02.04.4

Issue

Section

Articles