Social Vulnerability and How It Matters: A Bibliometric Analysis

Authors

  • Toni Toharudin Department of Statistics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Bandung 45363, Indonesia
  • Jadi Suprijadi Department of Statistics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Bandung 45363, Indonesia
  • Rezzy Eko Caraka College of Medicine, Seoul National University, 103 Daehak-ro, Ihwa-dong, Jongno-gu, Seoul, Republic of Korea
  • Resa Septiani Pontoh Department of Statistics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Bandung 45363, Indonesia
  • Rung Ching Chen Department of Information Management, College of Informatics, Chaoyang University of Technology, Taichung City 41349, Taiwan
  • Youngjo Lee Laboratory Hierarchical Likelihood, Department of Statistics, College of Natural Science, Seoul National University, Seoul 08826, South Korea
  • Bens Pardamean Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta 11480, Indonesia; BINUS Graduate Program- Master of Computer Science Program, Bina Nusantara University, Jakarta, 11480, Indonesia

DOI:

https://doi.org/10.6000/1929-4409.2021.10.71

Keywords:

Social Vulnerability, Review, Bibliometric, Disaster, Mitigation

Abstract

Interdisciplinary and cross-cultural studies of the impacts of environment and social vulnerability must be undertaken to address the problem of social vulnerability in the foreseeable future. Scientist or social scientists should first continuously strive towards approaches can integrate municipal technological expertise, experiences, knowledge, perceptions, and expectations into emergency circumstances, so that people can be sharper on issues and offer responses with their matters. In this paper. We performing the Bibliometric Analysis to review published papers on the keyword 'Social Vulnerability'. There are 29,468 papers published in the last 52 years from 1969 to November 2020. Disaster research by implementing the Internet of Things (IoT), data mining, machine learning is still needed.

References

Adger, W. N. (2006) ‘Vulnerability’, Global Environmental Change, 16(3), pp. 268–281. https://doi.org/10.1016/j.gloenvcha.2006.02.006 DOI: https://doi.org/10.1016/j.gloenvcha.2006.02.006

Albert, R., Jeong, H. and Barabási, A. L. (2000) ‘Error and attack tolerance of complex networks’, Nature, 406(6794), pp. 378–382. https://doi.org/10.1038/35019019 DOI: https://doi.org/10.1038/35019019

Aldrich, D. P. and Meyer, M. A. (2015) ‘Social Capital and Community Resilience’, American Behavioral Scientist, 59(2), pp. 254–269. https://doi.org/10.1177/0002764214550299 DOI: https://doi.org/10.1177/0002764214550299

Anderson, M. D. (2011) Disaster writing: The cultural politics of catastrophe in Latin America, Disaster Writing: The Cultural Politics of Catastrophe in Latin America. https://doi.org/10.5860/CHOICE.49-4337 DOI: https://doi.org/10.5860/CHOICE.49-4337

Bishop, S. R. et al. (2004) ‘Mindfulness: A proposed operational definition’, Clinical Psychology: Science and Practice, 11(3), pp. 230–241. https://doi.org/10.1093/clipsy/bph077 DOI: https://doi.org/10.1093/clipsy/bph077

Briguglio, L. et al. (2009) ‘Economic vulnerability and resilience: Concepts and measurements’, Oxford Development Studies, 37(3), pp. 229–247. https://doi.org/10.1080/13600810903089893 DOI: https://doi.org/10.1080/13600810903089893

Bussire, M. and Mulder, C. (2000) ‘Political instability and economic vulnerability’, International Journal of Finance and Economics, 5(4), pp. 309–330. https://doi.org/10.1002/1099-1158(200010)5:4<309::AID-IJFE136>3.0.CO;2-I DOI: https://doi.org/10.1002/1099-1158(200010)5:4<309::AID-IJFE136>3.0.CO;2-I

Caraka, R. E. et al. (2020) ‘Using Hierarchical Likelihood towards Support Vector Machine : Theory and Its Application’, IEEE Access, 8, pp. 194795–194807. https://doi.org/10.1109/ACCESS.2020.3033796 DOI: https://doi.org/10.1109/ACCESS.2020.3033796

Caraka, R. E. et al. (2021) ‘Cluster Around Latent Variable for Vulnerability Towards Natural Hazards, Non-Natural Hazards, Social Hazards in West Papua’, IEEE Access, 9, pp. 1972–1986. https://doi.org/10.1109/ACCESS.2020.3038883 DOI: https://doi.org/10.1109/ACCESS.2020.3038883

Carreño, M. L., Cardona, O. D. and Barbat, A. H. (2007) ‘A disaster risk management performance index’, Natural Hazards, 41(1), pp. 1–20. https://doi.org/10.1007/s11069-006-9008-y DOI: https://doi.org/10.1007/s11069-006-9008-y

Cenggoro, T. W. et al. (2019) ‘Features Importance in Classification Models for Colorectal Cancer Cases Phenotype in Indonesia’, Procedia Computer Science, 157, pp. 313–320. https://doi.org/10.1016/j.procs.2019.08.172 DOI: https://doi.org/10.1016/j.procs.2019.08.172

Cios, K. J. et al. (2007) Data mining: A knowledge discovery approach, Data Mining: A Knowledge Discovery Approach. https://doi.org/10.1007/978-0-387-36795-8 DOI: https://doi.org/10.1007/978-0-387-36795-8

Cutter, S. L., Boruff, B. J. and Shirley, W. L. (2003) ‘Social vulnerability to environmental hazards.’, Social science quarterly, 84(2), pp. 242–261. https://doi.org/10.1111/1540-6237.8402002 DOI: https://doi.org/10.1111/1540-6237.8402002

Djalante, R. et al. (2020) ‘The ASEAN’s responses to COVID-19: A policy sciences analysis’, PsyArXiv, (February 2020), p. 368. https://doi.org/10.31234/osf.io/8347d DOI: https://doi.org/10.31234/osf.io/8347d

Djalante, R., Shaw, R. and DeWit, A. (2020) ‘Building resilience against biological hazards and pandemics: COVID-19 and its implications for the Sendai Framework’, Progress in Disaster Science. https://doi.org/10.1016/j.pdisas.2020.100080 DOI: https://doi.org/10.1016/j.pdisas.2020.100080

Djalante, R. and Thomalla, F. (2012) ‘Disaster risk reduction and climate change adaptation in Indonesia’, International Journal of Disaster Resilience in the Built Environment, 3(2), pp. 166–180. https://doi.org/10.1108/17595901211245260 DOI: https://doi.org/10.1108/17595901211245260

Douglas, J. (2007) Physical vulnerability modelling in natural hazard risk assessment, Natural Hazards and Earth System Science. https://doi.org/10.5194/nhess-7-283-2007 DOI: https://doi.org/10.5194/nhess-7-283-2007

Drake, P. (2016) Indonesia and the politics of disaster: Power and representation in Indonesia’s mud volcano. Routledge. https://doi.org/10.4324/9781315525136 DOI: https://doi.org/10.4324/9781315525136

Flanagan, B. E. et al. (2011) ‘A Social Vulnerability Index for Disaster Management’, Journal of Homeland Security and Emergency Management, 8(1), pp. 1–24. https://doi.org/10.2202/1547-7355.1792

Flanagan, B. E. et al. (2020) ‘A Social Vulnerability Index for Disaster Management’, Journal of Homeland Security and Emergency Management. https://doi.org/10.2202/1547-7355.1792 DOI: https://doi.org/10.2202/1547-7355.1792

Guillaumont, P. (2009) ‘An economic vulnerability index: Its design and use for international development policy’, Oxford Development Studies, 37(3), pp. 193–228. https://doi.org/10.1080/13600810903089901 DOI: https://doi.org/10.1080/13600810903089901

James, C. et al. (2019) ‘CiteScore metrics: Creating journal metrics from the Scopus citation index’, Learned Publishing, 32(4), pp. 367–374. https://doi.org/10.1002/leap.1246 DOI: https://doi.org/10.1002/leap.1246

Kaban, P. A. et al. (2019) ‘Biclustering method to capture the spatial pattern and to identify the causes of social vulnerability in Indonesia: A new recommendation for disaster mitigation policy’, Procedia Computer Science, 157, pp. 31–37. https://doi.org/10.1016/j.procs.2019.08.138 DOI: https://doi.org/10.1016/j.procs.2019.08.138

Kamruzzaman, M. et al. (2017) ‘A study of IoT-based post-disaster management’, in International Conference on Information Networking, pp. 406–410. https://doi.org/10.1109/ICOIN.2017.7899468 DOI: https://doi.org/10.1109/ICOIN.2017.7899468

Koob, G. F. and Le Moal, M. (1997) ‘Drug abuse: Hedonic homeostatic dysregulation’, Science, 278(5335), pp. 52–58. https://doi.org/10.1126/science.278.5335.52 DOI: https://doi.org/10.1126/science.278.5335.52

Mailfert, K. (2007) ‘New farmers and networks: how beginning farmers build social connections in France’, in Tijdschrift voor economische en sociale geografie, pp. 21–31. https://doi.org/10.1111/j.1467-9663.2007.00373.x DOI: https://doi.org/10.1111/j.1467-9663.2007.00373.x

Maroco, J. et al. (2011) ‘Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests’, BMC Research Notes. https://doi.org/10.1186/1756-0500-4-299 DOI: https://doi.org/10.1186/1756-0500-4-299

Nasution, B. I. et al. (2020) ‘Revisiting social vulnerability analysis in Indonesia: An optimized spatial fuzzy clustering approach’, International Journal of Disaster Risk Reduction, 51(May), p. 101801. https://doi.org/10.1016/j.ijdrr.2020.101801 DOI: https://doi.org/10.1016/j.ijdrr.2020.101801

Pathirage, C. et al. (2012) ‘Managing disaster knowledge: Identification of knowledge factors and challenges’, International Journal of Disaster Resilience in the Built Environment. https://doi.org/10.1108/17595901211263620 DOI: https://doi.org/10.1108/17595901211263620

Pramana, S. et al. (2017) ‘Big data for government policy: Potential implementations of bigdata for official statistics in Indonesia’, in 2017 International Workshop on Big Data and Information Security (IWBIS), pp. 17–21. https://doi.org/10.1109/IWBIS.2017.8275097 DOI: https://doi.org/10.1109/IWBIS.2017.8275097

Quarantelli, E. L. (1988) ‘Disaster crisis management: A summary of research findings’, Journal of Management Studies, 25(4), pp. 373–385. https://doi.org/10.1111/j.1467-6486.1988.tb00043.x DOI: https://doi.org/10.1111/j.1467-6486.1988.tb00043.x

Sakhardande, P., Hanagal, S. and Kulkarni, S. (2016) ‘Design of disaster management system using IoT based interconnected network with smart city monitoring’, in 2016 International Conference on Internet of Things and Applications, IOTA 2016, pp. 185–190. https://doi.org/10.1109/IOTA.2016.7562719 DOI: https://doi.org/10.1109/IOTA.2016.7562719

Schneider, M. et al. (2017) ‘Feasibility of common bibliometrics in evaluating translational science’, Journal of Clinical and Translational Science, 1(1), pp. 45–52. https://doi.org/10.1017/cts.2016.8 DOI: https://doi.org/10.1017/cts.2016.8

Schulz, R. and Beach, S. R. (1999) ‘Caregiving as a risk factor for mortality: The caregiver health effects study’, Journal of the American Medical Association, 282(23), pp. 2215–2219. https://doi.org/10.1001/jama.282.23.2215 DOI: https://doi.org/10.1001/jama.282.23.2215

Siagian, T. H. et al. (2014) ‘Social vulnerability to natural hazards in Indonesia: driving factors and policy implications.’, Natural Hazard, 70(2), pp. 1603–1617. https://doi.org/10.1007/s11069-013-0888-3 DOI: https://doi.org/10.1007/s11069-013-0888-3

Smit, B. and Wandel, J. (2006) ‘Adaptation, adaptive capacity and vulnerability’, Global Environmental Change, 16(3), pp. 282–292. https://doi.org/10.1016/j.gloenvcha.2006.03.008 DOI: https://doi.org/10.1016/j.gloenvcha.2006.03.008

Steele, C. M. and Aronson, J. (1995) ‘Stereotype Threat and the Intellectual Test Performance of African Americans’, Journal of Personality and Social Psychology, 69(5), p. 797. https://doi.org/10.1037/0022-3514.69.5.797 DOI: https://doi.org/10.1037//0022-3514.69.5.797

Syahid, L. N. et al. (2020) ‘Determining Optimal Location for Mangrove Planting Using Remote Sensing and Climate Model Projection in Southeast Asia’, Remote Sensing, 12(22), pp. 1–29. https://doi.org/10.3390/rs12223734 DOI: https://doi.org/10.3390/rs12223734

Turner, B. L. et al. (2003) ‘A framework for vulnerability analysis in sustainability science’, Proceedings of the National Academy of Sciences of the United States of America, 100(July), pp. 8074–8079. https://doi.org/10.1073/pnas.1231335100 DOI: https://doi.org/10.1073/pnas.1231335100

Van Westen, C. (2000) ‘Remote sensing for natural disaster management’, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 33(B7/4 PART7), pp. 1609–1617.

Yu, M., Yang, C. and Li, Y. (2018) ‘Big data in natural disaster management: A review’, Geosciences (Switzerland), 8(5), p. 165. https://doi.org/10.3390/geosciences8050165 DOI: https://doi.org/10.3390/geosciences8050165

Zheng, L. et al. (2013) ‘Data mining meets the needs of disaster information management’, IEEE Transactions on Human-Machine Systems, 43(5), pp. 451–464. https://doi.org/10.1109/THMS.2013.2281762 DOI: https://doi.org/10.1109/THMS.2013.2281762

Downloads

Published

2021-03-04

How to Cite

Toharudin, T. ., Suprijadi, J. ., Caraka, R. E. ., Pontoh, R. S. ., Chen, R. C. ., Lee, Y. ., & Pardamean, B. . (2021). Social Vulnerability and How It Matters: A Bibliometric Analysis. International Journal of Criminology and Sociology, 10, 610–619. https://doi.org/10.6000/1929-4409.2021.10.71

Issue

Section

Articles

Most read articles by the same author(s)