Journal of Research Updates in Polymer Science http://lifescienceglobalca.com/index.php/jrups <p>This journal aims to bring together participants from academia and industry in highlighting the advances in polymer research along with its application to global development. The journal seeks to promote and disseminate knowledge of the various topics and technologies of Polymer research in various sectors like industry, agriculture, health, water, shelter and environmental management. The journal will disseminate the research results among development policymakers, scholars and practitioners with a hope to identify new research directions. It can also have practical implications within interdisciplinary developing fields such as functional / specialty polymers, biomaterials, drug delivery, electronic applications, composites, conducting polymers, liquid crystalline materials; and bring contribution in new fabrication techniques.</p> en-US <h4>Policy for Journals/Articles with Open Access</h4> <p>Authors who publish with this journal agree to the following terms:</p> <ul> <li>Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a <a href="http://creativecommons.org/licenses/by/3.0/" target="_new">Creative Commons Attribution License</a> that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.<br /><br /></li> <li>Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work</li> </ul> <h4>Policy for Journals / Manuscript with Paid Access</h4> <p>Authors who publish with this journal agree to the following terms:</p> <ul> <li>Publisher retain copyright .<br /><br /></li> <li>Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .</li> </ul> support@lifescienceglobal.com (Support Manager) support@lifescienceglobal.com (Technical Support Staff) Fri, 02 Feb 2024 16:01:25 +0000 OJS 3.3.0.10 http://blogs.law.harvard.edu/tech/rss 60 Physicochemical Properties of Films from Semirefined Carrageenan/TiO2 Integrated with Cinnamaldehyde Pickering Emulsion for Active Food Packaging http://lifescienceglobalca.com/index.php/jrups/article/view/9480 <p>Plastic waste has become a significant global environmental issue, particularly in the context of food packaging. In the present study, active packaging films were fabricated by integrating chitosan-stabilized cinnamaldehyde Pickering emulsion (PE) and titanium dioxide particles (TNPs) into the semirefined carrageenan (SRC) matrix. The impact of cinnamaldehyde PE and TNPs on the physical and mechanical attributes of the SRC films was explored. The integration of TNPs (3%, w/v) and 0.5% cinnamaldehyde PE revealed promising mechanical properties, with 21.86 MPa tensile strength and 34.21% of elongation at break value. The inclusion of TNPs and cinnamaldehyde PE led to enhancements in the moisture content and water solubility of the SRC films. The thermal stability of the film was marginally increased with 0.5% cinnamaldehyde PE. Scanning electron microscopy (SEM) revealed a uniform distribution of active compounds in the SRC matrix. The study findings highlight the potential of cinnamaldehyde PE and TNPs in active food packaging films as eco-friendly alternatives to conventional petrochemical-derived plastics in food packaging.</p> Khadijah Husna Abd Hamid, Azilah Ajit, Azren Aida Asmawi, Mohd Hafiz Arzmi, Nurul Aini Mohd Azman Copyright (c) 2024 https://creativecommons.org/licenses/by-nc/4.0 http://lifescienceglobalca.com/index.php/jrups/article/view/9480 Fri, 02 Feb 2024 00:00:00 +0000 Evaluation of a Strain Sweep Tests Protocol as a Tool for Assessing the Homogeneity of SBR Copolymer Composition http://lifescienceglobalca.com/index.php/jrups/article/view/9551 <p>Global competition in products and services demands constant improvement in production systems. Similarly, it is essential for industries to have quality control tools capable of assessing the compliance of a given product at a lower cost and with greater effectiveness. In the rubber and composite industry, where complex formulation and mixing systems can affect not only the quality of the final product but also the processing of rubber, the development of a protocol that assumes this function is important. The present study developed samples of elastomeric blends based on styrene-butadiene copolymer (SBR) with different filler concentrations (30, 60, and 90 phr of ground tire rubber as filler), which were analyzed using an oscillating cavity rheometer (MDpt-TechPro). Based on a proprietary testing protocol, the degree of homogeneity of the composites was evaluated, which was compared with scanning electron microscopy studies. The implemented protocol, which provides results within 30 minutes, proved to be promising for quality control of these blends, and it can be used by rubber processing industries, saving both time and cost, being an unprecedented study on the 'homogeneity-rheology' relationship.</p> Harrison Lourenço Corrêa, Cristina Russi Guimarães Furtado Copyright (c) 2024 https://creativecommons.org/licenses/by-nc/4.0 http://lifescienceglobalca.com/index.php/jrups/article/view/9551 Fri, 29 Mar 2024 00:00:00 +0000