Polymers used in Vertebroplasty: The Importance of Material Technology in the Rehabilitation of Osteoporotic Patients
DOI:
https://doi.org/10.6000/1929-5995.2024.13.06Keywords:
Osteoporosis, vertebroplasty, materials, polymersAbstract
Recent statistics show that the human population is tending towards aging. More effective medications and medical-hospital treatments, a more balanced diet, and regular physical activities contribute to longevity with quality of life.However, on many occasions, the natural aging process brings with it some chronic diseases, such as osteoporosis. Characterized by the loss of bone density, it can compromise mobility and even lead to death due to vertebral fractures, among other issues.To mitigate these risks, materials engineering becomes useful for restoring partial and/or total bone structure. In combination with a physiotherapeutic approach, they can rehabilitate the patient, providing them with a better quality of life.The present work aims to discuss the main polymeric materials used for the treatment of osteoporosis in patients with fractures.
References
Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology 2015; 1: 161-176. https://doi.org/10.1016/j.bsbt.2015.08.002
Mufflfly TM, Tizzano AP, Walters MD. The history and evolution of sutures in pelvic surgery, J. R. Soc. Med 2011; 104: 107-112. https://doi.org/10.1258/jrsm.2010.100243
Lendlein A. Polymers in biomedicine, Macromol. Biosci 2010; 10: 993-997. https://doi.org/10.1002/mabi.201000300
The Spine Market Group. 10 Brazilian spine companies to know. Available https://thespinemarketgroup.com/updated-2023-10-brazilian-spine-companies-to-know/. Access 15th July 2024.
GranView Research. Vertebroplasty and kyphoplasty needles market size, share and trends analysis report, 2020-2027. Partially available: https://www.grandviewresearch. com/industry-analysis/vertebroplasty-kyphoplasty-needles-market#.
Lendlein A, Behl M, Hiebl B, Wischke C. Shape-memory polymers as a technology platform for biomedical applications, Expert Rev. Med. Device 2010; 7: 357-379. https://doi.org/10.1586/erd.10.8
Serrano MC, Ameer MA. Recent insights into the biomedical applications of shape-memory polymers, Macromol. Biosci 2012; 12: 1156-1171. https://doi.org/10.1002/mabi.201200097
Kovylin RS, Aleynik D, Fedushkin I. Modern porous polymer implants: synthesis, properties and application. Polymer Science C 2021; 63: 29-46. https://doi.org/10.1134/S1811238221010033
Stamatialis DF,Papenburg BJ, Gironés M, Saiful S, Bettahalli SN, Schmitmeier S, Wessling M. Medical applications of membranes: drug delivery, artifificial organs and tissue engineering, J. Membr. Sci 2008; 308: 1-34. https://doi.org/10.1016/j.memsci.2007.09.059
Rho JY, Ashman RB, Turner CH. Young‘s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements, J. Biomech 1993; 26: 111-119. https://doi.org/10.1016/0021-9290(93)90042-D
Alizadeh-Osgouei M, Li Y, Wen C. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioactive Materials 2019; 4: 22-36. https://doi.org/10.1016/j.bioactmat.2018.11.003
BRASIL Ministério da Saúde. Secretaria de Atenção a Saúde. Protocolo clínico e diretrizes terapêuticas osteoporose. portaria Nº 224. Brasília: MS, 2014.
Baccaro LF. et al The epidemiology and management of postmenopausalosteoporosis: a viewpoint from Brazil. Clin interv in aging 2015; 10: 583. https://doi.org/10.2147/CIA.S54614
US Preventive Services Task Force. Screening for osteoporosis to prevent fractures: US preventive services task force recommendation statement. J Am Med Assoc 2018; 319(24): 2521-31. https://doi.org/10.1001/jama.2018.7498
Giangregorio LM. et al Too Fit To Fracture: outcomes of a Delphi consensus processon physical activity and exercise recommendations for adults with osteoporosis with or without vertebral fractures. Osteop Int 2015; 26(3): 891-910. https://doi.org/10.1007/s00198-014-2881-4
Agostini D, Zeppa Donati S, Lucertini F. et al Muscle and Bone Health inPostmenopausal Women: Role of Protein and Vitamin D Supplementation Combined with Exercise Training. Nutrients 2018; 10(8): E1103. https://doi.org/10.3390/nu10081103
Niinomi M. Recent metallic materials for biomedical applications. Metall. Mater. Trans 2002, 33(3): 477-486. https://doi.org/10.1007/s11661-002-0109-2
Currey JD. The design of mineralised hard tissues for their mechanical functions. J. Exp. Biol 1999; 202(23):3285-3294. https://doi.org/10.1242/jeb.202.23.3285
Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int. J. Pharm 2001; 221(1):1-22. https://doi.org/10.1016/S0378-5173(01)00691-3
Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J. Contr. Release 2005; 109(1): 256-274. https://doi.org/10.1016/j.jconrel.2005.09.023
Rezman K, Chen QZ, Blaker JJ, Bocca Rezwan ccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006; 27(18): 3413-3431. https://doi.org/10.1016/j.biomaterials.2006.01.039
Kasser MJ. Regulation of UHMWPE biomaterials in total hiparthroplasty, J. Biomed. Mater. Res. B: Appl. Biomater. 2013; 101: 400-406. https://doi.org/10.1002/jbm.b.32809
Richard AS, Nadim James H. In vitro macrophage response to polyethylene and polycarbonate-urethane particles, J. Biomed. Mater. Res 2010; 93: 347-355. https://doi.org/10.1002/jbm.a.32529
Granchi D, Amato I, Battistelli L, Ciapetti G, Pagani S, Avnet S, Baldini N, Giunti A. Molecular basis of osteoclastogenesis induced by osteoblasts exposed to wear particles, Biomaterials 2005; 26: 2371-2379. https://doi.org/10.1016/j.biomaterials.2004.07.045
Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants, Biomaterials 2007; 28: 4845-4869. https://doi.org/10.1016/j.biomaterials.2007.07.013
Mehboob H, Chang SH. Application of composites to orthopedicprostheses for effective bone healing: a review, Compos. Struct 2014; 118: 328-341. https://doi.org/10.1016/j.compstruct.2014.07.052
Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials: a review, Compos. Sci. Technol 2001; 61: 1189-1224. https://doi.org/10.1016/S0266-3538(00)00241-4
Taksali S, Grauer JN, Vaccaro AR. Material considerations for intervertebral disc replacement implants, Spine J. 2004; 4: S231-S238. https://doi.org/10.1016/j.spinee.2004.07.012
Joshi A, Fussell G, Thomas J, Hsuan A, Lowman A, Karduna A, Vresilovic E, Marcolongo M. Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. Biomaterials. 2006;27(2):176-84. https://doi.org/10.1016/j.biomaterials.2005.06.003
Kraft M, Koch DK, Bushelow M. An investigation into PEEK-onPEEK as a bearing surface candidate for cervical total disc replacement, Spine J 2012; 12: 603-611. https://doi.org/10.1016/j.spinee.2012.07.009
Lewis G. Nucleus pulposus replacement and regeneration/repair technologies: present status and future prospects, J. Biomed. Mater. Res. B: Appl. Biomater 2012; 100: 1702-1720. https://doi.org/10.1002/jbm.b.32712
Sivan SS, Roberts S, Urban JPG, Menage J,Bramhill J,Campbell D, Franklin VJ, Lydon F, Merkher Y, Maroudas A, Tighe B. Injectable hydrogels with high fifixed charge density and swelling pressure for nucleus pulposus repair: biomimetic glycosaminoglycan analogues, Acta Biomater 2014; 10: 1124-1133. https://doi.org/10.1016/j.actbio.2013.11.010
Bostman OM. Absorbable implants for the fixation of fractures J. Bone Joint Surg Am 1991; 73(1): 148-153. https://doi.org/10.2106/00004623-199173010-00022
Leenslag JW, Pennings AJ, RR, Bos FR, Rozema Boering G. Resorbable materials of poly(l-lactide). VI. Plates and screws for internal fracture fixation. Biomaterials 1987; 8(1): 70-73. https://doi.org/10.1016/0142-9612(87)90034-2
Hong Z, Zhang P, He C, Qiu X, Liu A, Chen L, Chen X, Jing X. Nano-composite of poly(l-lactide) and surface grafted hydroxyapatitte: mechanical properties and biocomplatibility. Biomaterials 2005; 26(32): 6296-6304. https://doi.org/10.1016/j.biomaterials.2005.04.018
Cotten A, Dewatre F, Cortet B, Assaker R, Leblond D, Duquesnoy B, Chastanet P, Clarisse J. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology. 1996; 200(2): 525-30. https://doi.org/10.1148/radiology.200.2.8685351
Galibert P, Deramond H, Rosat P, Le Gars D. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie 1987; 33(2): 166-8.
Hurley M, Kaakaji R, Dabus G, Shaibani A, Walker M, Fessler R, Bendok B. Percutaneous vertebroplasty. Neurosurg Clin N Am 2009; 20: 341-359. https://doi.org/10.1016/j.nec.2009.03.001
Cauley JA, Thompson DE, Ensrud KC, Scott JC, Black D. Risk of mortality following clinical fractures. Osteoporos Int. 2000; 11(7): 556-61. https://doi.org/10.1007/s001980070075
Lips P, Cooper C, Agnusdei D, Caulin F, Egger P, Johnell O, Kanis JA, Kellingray S, Leplege A, Liberman UA, McCloskey E, Minne H, Reeve J, Reginster JY, Scholz M, Todd C, de Vernejoul MC, Wiklund I. Quality of life in patients with vertebral fractures: validation of the Quality of Life Questionnaire of the European Foundation for Osteoporosis (QUALEFFO). Working Party for Quality of Life of the European Foundation for Osteoporosis. Osteoporos Int 1999; 10(2): 150-60. https://doi.org/10.1007/s001980050210
Lau E, Ong K, Kurtz S. et al Mortality following the diagnosis of a vertebral compression fracture in the Medicare population. J Bone Joint Surg Am 2008; 90(7): 1479-86. https://doi.org/10.2106/JBJS.G.00675
Kearns AE, Kallmes DF. Osteoporosis primer for the vertebroplasty practitioner: expanding the focus beyond needles and cement. AJNR Am J Neuroradiol 2008; 29: 1816-22. https://doi.org/10.3174/ajnr.A1176
Belkoff SM, Mathis JM, Jasper LE, Deramond, H. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine (Phila Pa 1976). 2001; 26(14): 1542-6. https://doi.org/10.1097/00007632-200107150-00008
Wang JL, Chiang CK, Kuo YW, Chou WK, Yang BD. Mechanism of fractures of adjacent and augmented vertebrae following simulated vertebroplasty. J Biomech 2012; 45(8): 1372-8. https://doi.org/10.1016/j.jbiomech.2012.03.003
Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, Segal M, Genant HK. Cummings SR. The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 1998; 128(10): 793-800. https://doi.org/10.7326/0003-4819-128-10-199805150-00001
Gold DT. The nonskeletal consequences of osteoporotic fractures. Psychologic and social outcomes. Rheum Dis Clin North Am 2001; 27(1): 255-62. https://doi.org/10.1016/S0889-857X(05)70197-6
Hall SE, Criddle RA, Comito TL, Prince RLA case-control study of quality of life and functional impairment in women with long-standing vertebral osteoporotic fracture. Osteoporos Int 1999; 9(6): 508-15. https://doi.org/10.1007/s001980050178
Hulme PA, Krebs J, Ferguson SJ, Berlemann U. Vertebroplasty and 398 Kyphoplasty: A Systematic Review of 69 Clinical Studies. Spine 2006; 31(17): 1983-2001. https://doi.org/10.1097/01.brs.0000229254.89952.6b
Cruickshank JW. Interbody Spine Fusion Utilizing Methyl Methacrylate Bone Glue (MMG). Neurol. Orthop. Med. Surg 1988; 9: 361-362.
Weill A, Chiras J, Simon JM. et al. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology 1996; 199(1): 241-7. https://doi.org/10.1148/radiology.199.1.8633152
Heini PF, Walchli B, Berlemann U. Percutaneous transpedicular vertebroplasty with PMMA: operative technique and early results. A prospective study for the treatment of osteoporotic compression fractures. Eur Spine J 2000; 9(5): 445-50. https://doi.org/10.1007/s005860000182
Heran M, Legiehn G, Munk P. Current concepts and techniques in percutaneous vertebroplasty. Orthopedic Clinics of North America 2006; 37: 409-434. https://doi.org/10.1016/j.ocl.2006.05.001
Lieberman I, Togawa D, Kayanja M. Vertebroplasty and kyphoplasty: filler materials. The Spine Journal 2005; 5: 305S-316S. https://doi.org/10.1016/j.spinee.2005.02.020
Dalby MJ, Di Silvio L, Harper EJ, Bonfield W. Biomaterials 2002; 23 : 569. https://doi.org/10.1016/S0142-9612(01)00139-9
Vazquez B, Elvira C, Levenfeld B, Pascual B, Goni I, Gurruchaga M, Ginebra MP, Gil FX, Planell JA, Liso PA, Rebuelta M, San Roman JJ. Biomed Mater Res 1997; 34: 129. https://doi.org/10.1002/(SICI)1097-4636(199701)34:1<129::AID-JBM17>3.3.CO;2-S
Niv D, Gofeld M, Devor M. Causes of pain in degenerative bone and joint disease: a lesson from vertebroplasty. Pain 2003; 105(3): 387-92. https://doi.org/10.1016/S0304-3959(03)00277-X
Talmagde K. Vertebral compression fracture treatments in:Spine - Technology Handbook 2006, Elsevier. https://doi.org/10.1016/B978-012369390-7/50013-7
Lu JX, Huang ZW, Tropiano P, Clouet D'Orval B, Remusat M, Dejou J, Proust JP, Poitout DJ. Mater Sci Mater M 2002; 13: 803. https://doi.org/10.1023/A:1016135410934
Troubadour G, Too CW, Koch G, Caudrelier J,Cazzato RL, Garnon J. et al CIRSE guidelines on percutaneous vertebral augmentation. Cardiovasc Intervent Radiol. 2017; 40: 331-342. https://doi.org/10.1007/s00270-017-1574-8
Boger A, Heini P, Windolf M, Schneider E. Adjacent vertebral failure after vertebroplasty: a biomechanical study of low-modulus PMMA cement. Eur Spine J 2007; 16: 2118-2125. https://doi.org/10.1007/s00586-007-0473-0
Meng B, Qian M, Shao-Xiang X, Hui-Lin Y, Zong-Ping L. biomechanical characteristics of cement/gelatin mixture for prevention of cement leakage in vertebral augmentation. Eur Spine J 2013, 22: 2249-2255. https://doi.org/10.1007/s00586-013-2886-2
Paul C, Steinhauser E, Kühn Klaus-Dieter. Processing properties and viscosities of PMMA bone cements. Orthopadie 2023; (52): 957-967. https://doi.org/10.1007/s00132-023-04450-x
Kolmedez S, Lion A. Characterisation and modelling rheological properties of acrylic bone cement during application. Mechanics Research Communications 2013; 48: 93-99. https://doi.org/10.1016/j.mechrescom.2012.12.010
Farrar D, Rose J. Rheological properties of PMMA bone cements during curing. Biomaterials 2021; 22(22): 3005-3013. https://doi.org/10.1016/S0142-9612(01)00047-3
Jiang H, Sitoci-Ficici K, Reinshagen C, Molcanyi M, Zivcak J, Hudak R, Laube T, Schanbelrauch M, Weisser J, Schäfer U, Pinzer T, Schakert G, Zhang X, Wähler M, Brautferger U, Rieger B. Adjustable polyurethane foam as filling material for a novel spondyloplasty: Biomechanics and biocompatibility. World Neurosurgery 2018; 112: e848-e858. https://doi.org/10.1016/j.wneu.2018.01.174
Basgul C, MacDonald D, Yu T, Marcolongo M, Kurtz S. Structure-property relationships for 3d-printed peek intervertebral lumbar cages produced using fused filament fabrication J Mater Res 2018; 33: 2040-2051. https://doi.org/10.1557/jmr.2018.178
Beltrão V, Gaya M, Corrêa H. Preliminary market analysis of PEEK in South America: Opportunities and challenges. E-Polymers 2019; 19: 341-348. https://doi.org/10.1515/epoly-2019-0035
Santing H, Meijer H, Raghoebar G, Ozcan M. Fracture strength and failure mode of maxilary implant-supported provisional single crowns: A comparison of composite resin crowns fabricated directly over peek abutments and solid titanium abutments. Clin. Implant. Dent 2012; (14): 882-889. https://doi.org/10.1111/j.1708-8208.2010.00322.x
Stratton-Powell A, Pasko K, Brockett C, Tipper J. The biologic response to polyetheretherketone (peek) wear particles in total joint replacement: A systematic review. Clin. Orthop. Relat Res 2016; 474: 2394-2404. https://doi.org/10.1007/s11999-016-4976-z
Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008; 29(20): 2941-53. https://doi.org/10.1016/j.biomaterials.2008.04.023
Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater. 2004 Dec 7; 8: 37-57. https://doi.org/10.22203/eCM.v008a05
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .