Rheological, Structural and Melt Spinnability Study on Thermo-plastic Starch/PLA Blend Biopolymers and Tensile, Thermal and Structural Characteristics of Melt Spun Fibers

Authors

  • Selamu Temesgen Institute for Circular Economy of Bio: Polymers at Hof University (ibp), 95028 Hof/Saale, Germany; Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar P.O. Box 1037, Ethiopia and School of Textiles, Kombolcha Institute of Technology, Wollo University, Kombolcha P.O. Box 208, Ethiopia https://orcid.org/0000-0003-2367-5476
  • Lucas Großmann Institute for Circular Economy of Bio: Polymers at Hof University (ibp), 95028 Hof/Saale, Germany https://orcid.org/0000-0003-2666-8706
  • Tamrat Tesfaye Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar P.O. Box 1037, Ethiopia
  • Ines Kuehnert Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, German
  • Norbert Smolka Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Str. 6, D-01069 Dresden, German
  • Michael Nase Institute for Circular Economy of Bio: Polymers at Hof University (ibp), 95028 Hof/Saale, Germany https://orcid.org/0000-0002-8017-4849

DOI:

https://doi.org/10.6000/1929-5995.2024.13.20

Keywords:

Thermoplastic starch, biopolymer, sustainable polymer, melt spinning, tartaric acid, shear viscosity

Abstract

In this study, rheology, structure and melt spinnability of thermoplastic starch TPS/PLA blend compounds as well as characteristics of melt spun fibers was studied. Thermoplastic starch is further modified with tartaric acid and blends are compatibilized using graft copolymer, maleic anhydride grafted PLA. Results from rheology analysis of compounds shows significantly reduced melt flow rate MFR and reduced viscosity as a result of tartaric acid modification and compatibilization, but the viscosity was increased as TPS_TA content in the blend increased. In addition, storage modulus (G`) and loss modulus (G``) were increased with increasing TPS_TA content in the blends. Fourier transform infrared spectroscopy FTIR analysis confirmed O-H peak shifts and peak intensity changes associated to starch thermosplasticization and further peak shifts associated with more O-H bond breakages due to tartaric acid modification, indicating acid hydrolysis action of tartaric acid which agrees with results from rheology study. Melt spinning trials show the possibility of melt spinning of biopolymer fibers from blends with up to 40%w/w TPS_TA content. The melt spun fibers have diameter in range of 12.0–124.0 μm depending on take up speed and TPS_TA content. Differential scanning calorimetry DSC analysis of melt spun fibers shows glass transition Tg shifts attributed to molecular orientation and rigid amorphous TPS phase formation as well as the occurrence of double melting peaks Tm associated to different crystals resulting from induced crystallization. The overall result from this study shows the possibility of melt spinning thermoplastic starch/PLA blend biopolymers in to fibers, revealing opportunity to utilize starch biopolymer for fiber spinning. Furthermore, the results also show the need for further research engagements to get fibers with better performance.

References

Naeimirad M, Krins B, Gruter GJM. A Review on Melt-Spun Biodegradable Fibers. Sustain 2023; 15(19). https://doi.org/10.3390/su151914474

Chen X, Memon HA, Wang Y, Marriam I, Tebyetekerwa M. Circular Economy and Sustainability of the Clothing and Textile Industry. Mater Circ Econ 2021; 3(1): 1-9. https://doi.org/10.1007/s42824-021-00026-2

Opperskalski TE, Sophia, Ridler TE, Sophie Joyce, Siew, SuetYin TE, Tan, Evonne T E. Preferred Fiber and Materials Market Report 2021; 118.

Mehta S. Biodegradable textile polymers: a review of current scenario and future opportunities. Environ Technol Rev 2023; 12(1): 441-457. https://doi.org/10.1080/21622515.2023.2227391

Tian W, et al. Recent progress in biobased synthetic textile fibers. Front Mater 2022; 1-12. https://doi.org/10.3389/fmats.2022.1098590

Motloung MP, Mofokeng TG, Mokhena TC, Ray SS. Recent advances on melt-spun fibers from biodegradable polymers and their composites. Int Polym. Process 2022; 37(5): 523-540. https://doi.org/10.1515/ipp-2022-0023

Syafiq RMO, et al. Corn starch nanocomposite films reinforced with nanocellulose 2024; 9(8): 2653-2681. https://doi.org/10.1515/psr-2022-0011

Suja RN, Sridevi B, Thiagamani SMK. Mechanical and Dynamic Mechanical Characterization of Epoxy Composites Reinforced with Casuarina Leaf Bio Fibre. J Res Updat Polym Sci 2024; 13: 66-74. https://doi.org/10.6000/1929-5995.2024.13.08

Samir A, Ashour FH, Hakim AAA, Bassyouni M. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater Degrad 2022; 6(1). https://doi.org/10.1038/s41529-022-00277-7

Cheng Y-L, et al. Starch: A Veritable Natural Polymer for Economic Revolution. Intech 2016; 11(tourism): p. 13. [Online]. Available: https://www.intechopen.com/books/ advanced-biometric-technologies/liveness-detection-in-biometrics.

Calambás Pulgarin HL, Caicedo C, López EF. Effect of surfactant content on rheological, thermal, morphological and surface properties of thermoplastic starch (TPS) and polylactic acid (PLA) blends. Heliyon 2022; 8(10). https://doi.org/10.1016/j.heliyon.2022.e10833

Fonseca-Florido HA, et al. Effects of multiphase transitions and reactive extrusion on in situ thermoplasticization/ succination of cassava starch. Carbohydr Polym 2019; 225: 115250. https://doi.org/10.1016/j.carbpol.2019.115250

Jullanun P, Yoksan R. Morphological characteristics and properties of TPS/PLA/cassava pulp biocomposites. Polym Test 2020; 88: 106522. https://doi.org/10.1016/j.polymertesting.2020.106522

Temesgen S, Rennert M, Tesfaye T, Großmann L, Kuehnert I. Thermal, morphological , and structural characterization of starch-based bio-polymers for melt spinnability 2024; 1: 1-19. https://doi.org/10.1515/epoly-2024-0025

Lendvai LDB. View of Mechanical, Morphological and Thermal Characterization of Compatibilized Poly(lactic acid)_Thermoplastic Starch Blends.pdf.

Mittal V, Akhtar T, Matsko N. Mechanical, thermal, rheological and morphological properties of binary and ternary blends of PLA, TPS and PCL. Macromol Mater Eng 2015; 300(4): 423-435. https://doi.org/10.1002/mame.201400332

Caicedo C, Pulgarin HLC. Study of the physical and mechanical properties of thermoplastic starch/poly(lactic acid) blends modified with acid agents. Processes 2021; 9(4). https://doi.org/10.3390/pr9040578

Temesgen S, Rennert M, Tesfaye T, Nase M. Review on spinning of biopolymer fibers from starch. Polymers (Basel) 2021; 13(7): 1-24. https://doi.org/10.3390/polym13071121

Joseph Arockiam A, et al. Mechanical and thermal characterization of additive manufactured fish scale powder reinforced PLA biocomposites. Mater Res Express 2023; 10(7): 8-10. https://doi.org/10.1088/2053-1591/ace41d

Sriram M, Kadhirnilavan, Mohammed KAN, Anandhakumar S, Mishra A, Tiwari A. Bio-Based PLA Membranes for Ion Transport and Ion Filtration. J Res Updat Polym Sci 2023; 12: 220-230. https://doi.org/10.6000/1929-5995.2023.12.21

Mayekar PC, Limsukon W, Bher A, Auras R. Breaking It Down: How Thermoplastic Starch Enhances Poly(lactic acid) Biodegradation in Compost─A Comparative Analysis of Reactive Blends. ACS Sustain Chem Eng 2023; 11(26): 9729-9737. https://doi.org/10.1021/acssuschemeng.3c01676

Moghaddam MRA, Razavi SMA, Jahani Y. Effects of Compatibilizer and Thermoplastic Starch (TPS) Concentration on Morphological, Rheological, Tensile, Thermal and Moisture Sorption Properties of Plasticized Polylactic Acid/TPS Blends. J Polym Environ 2018; 26(8): 3202-3215. https://doi.org/10.1007/s10924-018-1206-7

Lendvai L, Brenn D. Mechanical, Morphological and Thermal Characterization of Compatibilized Poly(lactic acid)/Thermoplastic Starch Blends. Acta Tech Jaurinensis 2020; 13(1): 1-13. https://doi.org/10.14513/actatechjaur.v13.n1.532

Akrami M, Ghasemi I, Azizi H, Karrabi M, Seyedabadi M. A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr. Polym 2016; 144: 254-262. https://doi.org/10.1016/j.carbpol.2016.02.035

Palai B, Biswal M, Mohanty S, Nayak SK. In situ reactive compatibilization of polylactic acid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof. Ind Crops Prod 2019; 141: 111748. https://doi.org/10.1016/j.indcrop.2019.111748

da Silva SC, Simões BM, Yamashita F, de Carvalho FA. Compatibilizers for biodegradable starch and poly (lactic acid) materials produced by thermoplastic injection. Res. Soc. Dev 2022; 11(14): e476111436521. https://doi.org/10.33448/rsd-v11i14.36521

Gunawardene OHP, et al. Compatibilization of starch/synthetic biodegradable polymer blends for packaging applications: A review. J Compos Sci 2021; 5(11): 1-33. https://doi.org/10.3390/jcs5110300

Ávila-Orta CA, Covarrubias-Gordillo CA, Fonseca-Florido HA, Melo-López L, Radillo-Ruíz R, Gutiérrez-Montiel E. PLA/modified-starch blends and their application for the fabrication of non-woven fabrics by melt-blowing. Elsevier -Carbohydrate Polymers 2023; 316: 120975. https://doi.org/10.1016/j.carbpol.2023.120975

Zarski A, Bajer K, Kapuśniak J. Review of the most important methods of improving the processing properties of starch toward non‐food applications. Polymers (Basel) 2021; 13(5): 1-33. https://doi.org/10.3390/polym13050832

Fonseca-Florido HA, et al. Effects of multiphase transitions and reactive extrusion on in situ thermoplasticization/ succination of cassava starch. Carbohydr Polym 2019; 225. https://doi.org/10.1016/j.carbpol.2019.115250

Chen P, Xie F, Zhao L, Qiao Q, Liu X. Effect of acid hydrolysis on the multi-scale structure change of starch with different amylose content. Food Hydrocoll 2017; 69: 359-368. https://doi.org/10.1016/j.foodhyd.2017.03.003

Tupa MV, Altuna L, Herrera ML, Foresti ML. Preparation and Characterization of Modified Starches Obtained in Acetic Anhydride/Tartaric Acid Medium. Starch/Staerke 2020; 72(5-6): 1-11. https://doi.org/10.1002/star.201900300

Chauhan S, Raghu N, Raj A. Effect of maleic anhydride grafted polylactic acid concentration on mechanical and thermal properties of thermoplasticized starch filled polylactic acid blends. Polym Polym Compos 2021; 29(9_suppl): S400-S410. https://doi.org/10.1177/09673911211004194

Zhang C, Lan Q, Zhai T, Nie S, Luo J, Yan W. Melt crystallization behavior and crystalline morphology of Polylactide/Poly(ε-caprolactone) blends compatibilized by lactide-caprolactone copolymer. Polymers (Basel) 2018; 10(11). https://doi.org/10.3390/polym10111181

Zhang S, He Y, Yin Y, Jiang G. Fabrication of innovative thermoplastic starch bio-elastomer to achieve high toughness poly(butylene succinate) composites. Carbohydr Polym 2019; 206: 827-836. https://doi.org/10.1016/j.carbpol.2018.11.036

Oliver-Ortega H, Reixach R, Espinach FX, Méndez JA. Maleic Anhydride Polylactic Acid Coupling Agent Prepared from Solvent Reaction: Synthesis, Characterization and Composite Performance. Materials (Basel) 2022; 15(3). https://doi.org/10.3390/ma15031161

Hwang SW, Shim JK, Selke S, Soto-Valdez H, Rubino M, Auras R. Effect of maleic-anhydride grafting on the physical and mechanical properties of poly(L-lactic acid)/starch blends. Macromol Mater Eng 2013; 298(6): 624-633. https://doi.org/10.1002/mame.201200111

Rigolin TR, Costa LC, Venâncio T, Perlatti B, Bettini SHP. The effect of different peroxides on physical and chemical properties of poly(lactic acid) modified with maleic anhydride. Polymer (Guildf) 2019; 179. https://doi.org/10.1016/j.polymer.2019.121669

Ma P, Jiang L, Ye T, Dong W, Chen M. Melt free-radical grafting of maleic anhydride onto biodegradable poly(lactic acid) by using styrene as a comonomer. Polymers (Basel) 2014; 6(5): 1528-1543. https://doi.org/10.3390/polym6051528

Ramli H, Zainal NFA, Hess M, Chan CH. Basic principle and good practices of rheology for polymers for teachers and beginners. Chem Teach Int 2022; 4(4): 307-326. https://doi.org/10.1515/cti-2022-0010

Huneault MA, Li H. Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer (Guildf) 2007; 48(1): 270-280. https://doi.org/10.1016/j.polymer.2006.11.023

Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD. Rheological and thermal properties of thermoplastic starch with high glycerol content. Carbohydr Polym 2004; 58(2): 139-147. https://doi.org/10.1016/j.carbpol.2004.06.002

Il Park D, Dong Y, Wang S, Lee SJ, Choi HJ. Rheological Characteristics of Starch-Based Biodegradable Blends. Polymers (Basel) 2023; 15(8). https://doi.org/10.3390/polym15081953

Ning W, Xingxiang Z, Na H, Jianming F. Effects of Water on the Properties of Thermoplastic Starch Poly(lactic acid) Blend Containing Citric Acid. J Thermoplast Compos Mater 2010; 23(1): 19-34. https://doi.org/10.1177/0892705709096549

Vlachopoulos J, Strutt D. Rheology of molten polymers. Multilayer Flex. Packag Technol Appl Food Pers Care Over-the-Counter Pharm Ind 2009; 57-72. https://doi.org/10.1016/B978-0-8155-2021-4.10005-X

Castro JM, et al. Thermoplastic starch/polyvinyl alcohol blends modification by citric acid-glycerol polyesters. Int J Biol Macromol 2023; 244. https://doi.org/10.1016/j.ijbiomac.2023.125478

Zhang S, He Y, Lin Z, Li J, Jiang G. Effects of tartaric acid contents on phase homogeneity, morphology and properties of poly (butyleneadipate-co-terephthalate)/thermoplastic starch bio-composities. Polym Test 2019; 76: 385-395. https://doi.org/10.1016/j.polymertesting.2019.04.005

Esmaeili M, Pircheraghi G, Bagheri R, Altstädt V. Poly(lactic acid)/coplasticized thermoplastic starch blend: Effect of plasticizer migration on rheological and mechanical properties. Polym Adv Technol 2019; 30(4): 839-851. https://doi.org/10.1002/pat.4517

Bernreitner K, Neißl W, Gahleitner M. Correlation between molecular structure and rheological behaviour of polypropylene. Polym Test 1992; 11(2): 89-100. https://doi.org/10.1016/0142-9418(92)90040-I

Strasser C. Polymer Rheology and Molecular Mass (Peek 1. pp. 2-5.

Zeraatpishe M, Hassanajili S. Investigation of physical and rheological properties of LDPE/HDPE/thermoplastic starch biodegradable blend films. Polym Eng Sci 2023; 63(9): 3116-3134. https://doi.org/10.1002/pen.26432

Trinh BM, Tadele DT, Mekonnen TH. Robust and high barrier thermoplastic starch - PLA blend films using starch-graft-poly(lactic acid) as a compatibilizer. Mater Adv 2022; 3(15): 6208-6221. https://doi.org/10.1039/D2MA00501H

Galkina YA, Kryuchkova NA, Vershinin MA, Kolesov BA. Features of strong O-H⋯O and N-H⋯O hydrogen bond manifestation in vibrational spectra. J Struct Chem 2017; 58(5): 911-918. https://doi.org/10.1134/S0022476617050080

Wang N, Yu J, Han C. Influence of citric acid on the properties of glycerol-plasticised cornstarch extrusion blends. Polym Polym Compos 2007; 15(7): 545-552. https://doi.org/10.1177/096739110701500704

Esmaeili M, Pircheraghi G, Bagheri R. Optimizing the mechanical and physical properties of thermoplastic starch via tuning the molecular microstructure through co-plasticization by sorbitol and glycerol. Polym Int 2017; 66(6): 809-819. https://doi.org/10.1002/pi.5319

Thiruganasambanthan T, Thiagamani SMK, Santulli C, Krishnasamy S, Muthukumar C. Preparation of Sodium Alginate/Rice starch blend polymer film for soil moisture sensing. Mater Today Proc 2022; 64: 352-356. https://doi.org/10.1016/j.matpr.2022.04.702

Haryńska A, Janik H, Sienkiewicz M, Mikolaszek B, Kucińska-Lipka J. PLA-Potato Thermoplastic Starch Filament as a Sustainable Alternative to the Conventional PLA Filament: Processing, Characterization, and FFF 3D Printing. ACS Sustain. Chem Eng 2021; 9(20): 6923-6938. https://doi.org/10.1021/acssuschemeng.0c09413

Jaderi Z, Tabatabaee Yazdi F, Mortazavi SA, Koocheki A. Effects of glycerol and sorbitol on a novel biodegradable edible film based on Malva sylvestris flower gum. Food Sci Nutr 2023; 11(2): 991-1000. https://doi.org/10.1002/fsn3.3134

Tadmor Z, Costas GG. Principles of Polymer Process Ing Second Edition 2006.

Li H, Huneault MA. Crystallization of PLA/Thermoplastic Starch Blends. Int Polym Process 2008; 23(5): 412-418. https://doi.org/10.3139/217.2185

Yasuniwa M, Iura K, Dan Y. Melting behavior of poly(l-lactic acid): Effects of crystallization temperature and time. Polymer (Guildf) 2007; 48(18): 5398-5407. https://doi.org/10.1016/j.polymer.2007.07.012

Yoksan R, Dang KM, Boontanimitr A, Chirachanchai S. Relationship between microstructure and performances of simultaneous biaxially stretched films based on thermoplastic starch and biodegradable polyesters. Int J Biol Macromol 2021; 190: 141-150. https://doi.org/10.1016/j.ijbiomac.2021.08.206

Ziabicki A, Jarecki L, Sorrentino A. The role of flow-induced crystallisation in melt spinning. E-Polymers 2004; 072: 1-14. https://doi.org/10.1515/epoly.2004.4.1.823

Richter LE, Carlos A, Beber DM. Influence of Take-up Speeds on the Structure, Properties and Dyeability of Novel Polyamide 5,6 As-spun Fibers.

Müller P, et al. Interactions, structure and properties in PLA/plasticized starch blends. Polymer (Guildf) 2016; 103: 9-18. https://doi.org/10.1016/j.polymer.2016.09.031

Ma X, Yu J, Kennedy JF. Studies on the properties of natural fibers-reinforced thermoplastic starch composites 2005; 62: 19-24. https://doi.org/10.1016/j.carbpol.2005.07.015

Koike N, et al. Effects of melt-spinning speed on structure development of polypropylene fiber after necking. J Fiber Sci Technol 2020; 76(5): 161-169. https://doi.org/10.2115/fiberst.2020-0019

Downloads

Published

2024-10-24

How to Cite

Temesgen, S. ., Großmann, L. ., Tesfaye, T. ., Kuehnert, I. ., Smolka, N. ., & Nase, M. . (2024). Rheological, Structural and Melt Spinnability Study on Thermo-plastic Starch/PLA Blend Biopolymers and Tensile, Thermal and Structural Characteristics of Melt Spun Fibers. Journal of Research Updates in Polymer Science, 13, 187–209. https://doi.org/10.6000/1929-5995.2024.13.20

Issue

Section

Articles