Perspectives of Electricity Storage in Polymer Capacitors

Authors

  • Duško Dudic Department of Radiation Chemistry and Physics, “VINČA” Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia https://orcid.org/0000-0003-1134-8005

DOI:

https://doi.org/10.6000/1929-5995.2021.10.12

Keywords:

Polymer, capacitor, electron trapping, energy density

Abstract

The price and environmental aspects of electricity storage significantly affect the application of green technologies. The electrochemical batteries are currently the best choice for storing electricity for most industrial needs and products. Polymer capacitors show very low energy density compared to conventional batteries and therefore cannot be widely used for electricity disposal. At the same time, all other features of polymer capacitors that characterize battery systems are ideal. After a brief comparison of the basic properties of electrochemical and physical batteries, this paper presents the influence of electron trapping on the energy density of a polyethylene capacitor. The presented results indicate that the phenomenon of electron trapping in polymers can increase the energy deposit of polymer capacitors.

References

Tokimatsu K, Höök M, McLellan B, Wachtmeister H, Yasuoka R, Nishio M. Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy. Applied Energy 2018; 225: 1158-1175. https://doi.org/10.1016/j.apenergy.2018.05.047 DOI: https://doi.org/10.1016/j.apenergy.2018.05.047

Оstergaard PA, Lund H, Stadler I. Towards 100% renewable energy systems. Applied Energy 2011; 88: 419-421. https://doi.org/10.1016/j.apenergy.2010.10.013 DOI: https://doi.org/10.1016/j.apenergy.2010.10.013

Hannan MA, Lipu MSH, Hussain A, Mohamed A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew Sust Energ Rev 2017; 78: 834-854. https://doi.org/10.1016/j.rser.2017.05.001 DOI: https://doi.org/10.1016/j.rser.2017.05.001

Nitta N, Feixiang Wu, Lee JT, Yushin G. Li-ion battery materials: present and future. Materials Today 2015; 18: 252-264. https://doi.org/10.1016/j.mattod.2014.10.040 DOI: https://doi.org/10.1016/j.mattod.2014.10.040

Streibl M, Karmazin R. Materials and applications of polymer films for power capacitors with special respect to nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation 2018; 25: 2429. https://doi.org/10.1109/TDEI.2018.007392 DOI: https://doi.org/10.1109/TDEI.2018.007392

Zhang T, Guo M, Jiang J, Zhang X, Lin Y, Nan C-W, Shen Y. Modulating interfacial charge distribution and compatibility boosts high energy density and discharge efficiency of polymer nanocomposites. RSC Adv 2019; 9: 35990-35997. https://doi.org/10.1039/C9RA06933J DOI: https://doi.org/10.1039/C9RA06933J

Zhang H, Marwat MA, Xie B, Ashtar M, Liu K, Zhu Y, Zhang L, Fan P, Samart C, Ye Z-G. Polymer matrix nanocomposites with 1d ceramic nanofillers for energy storage capacitor applications. ACS Appl Mater Inter 2020; 12: 1-37. https://doi.org/10.1021/acsami.9b15005 DOI: https://doi.org/10.1021/acsami.9b15005

Liu Y, Hou Y, Ji Q et al. Modulation of individual-layer properties results in excellent discharged energy density of sandwich-structured composite films. J Mater Sci Mater Electron 2020; 31: 7663-7671. https://doi.org/10.1007/s10854-020-03302-0 DOI: https://doi.org/10.1007/s10854-020-03302-0

Li JY, Zhang L, Ducharme S. Electric energy density of dielectric nanocomposites. Appl Phys Lett 2007; 90: 132901. https://doi.org/10.1063/1.2716847 DOI: https://doi.org/10.1063/1.2716847

Nyholm L, Nyström G, Mihranyan A, Strømme M. Toward flexible polymer and paper-based energy storage devices. Adv Mater 2011; 23: 3751-3769. https://doi.org/10.1002/adma.201004134 DOI: https://doi.org/10.1002/adma.201004134

Škipina B, Petronijević IM, Luyt AS, Dojčinović BP, Duvenhage MM, Swart HC, Suljovrujić E, Dudić D. Ionic diffusion in iPP: DC electrical conductivity. Surfaces and Interfaces 2020; 21: 100772. https://doi.org/10.1016/j.surfin.2020.100772 DOI: https://doi.org/10.1016/j.surfin.2020.100772

Ahuja J, Dawson L,Lee R. A circular economy for electric vehicle batteries: driving the change. Journal of Property Planning and Environmental Law 2020; 12: 235-250. https://doi.org/10.1108/JPPEL-02-2020-0011 DOI: https://doi.org/10.1108/JPPEL-02-2020-0011

Albrecht V, Janke A, Németh E, Spange S, Schubert G, Simon F. Some aspects of the polymers electrostatic charging effects. Journal of Electrostatics 2009; 67: 7-11. https://doi.org/10.1016/j.elstat.2008.10.002 DOI: https://doi.org/10.1016/j.elstat.2008.10.002

Dudić D, Škipina B, Dojčilović J, Novaković L, Kostoski D. Effects of charge trapping on the electrical conductivity of low-density polyethylene-carbon black composites. J App Pol Sci 2011; 121: 138-143. https://doi.org/10.1002/app.33421 DOI: https://doi.org/10.1002/app.33421

Zhou T-C, Chen G, Liao R, Xu Z. Charge trapping and detrapping in polymeric materials: Trapping parameters. Journal of Applied Physics 2011; 110: 043724. https://doi.org/10.1063/1.3626468 DOI: https://doi.org/10.1063/1.3626468

Dissado LA, Thabet A. Simulation of electrical ageing in insulating polymers using a quantitative physical model. J Phys D: Appl Phys 2008; 41: 085412. https://doi.org/10.1088/0022-3727/41/8/085412 DOI: https://doi.org/10.1088/0022-3727/41/8/085412

Cho Y-M, Rhee J-H, Baek J-E, Ko K-C. Implementing a dielectric recovery strength measuring system for molded case circuit breakers. J Electr Eng Technol 2018; 13: 1752-1758.

http://doi.org/10.5370/JEET.2018.13.4.1752

Downloads

Published

2021-12-30

How to Cite

Dudic, D. (2021). Perspectives of Electricity Storage in Polymer Capacitors. Journal of Research Updates in Polymer Science, 10, 101–105. https://doi.org/10.6000/1929-5995.2021.10.12

Issue

Section

Articles