Surface Functionalization of TiO2 with Plant Extracts and their Combined Antimicrobial Activities Against E. faecalis and E. Coli
DOI:
https://doi.org/10.6000/1929-5995.2012.01.01.6Keywords:
Titanium dioxide, antimicrobial activity, Enterococcus faecalis, Escherichia coliAbstract
The aim of this study is to enhance the antibacterial activity of TiO2 by pure plant extracts of Bauhinia variegata and Tinospora. cordifolia by making a composite of plant extract and TiO2. Plant extracts, TiO2 and plant extracts/TiO2 composites were investigated against two bacterial strain Enterococcus faecalis and Escherichia coli. X-ray diffraction investigations have confirmed the presence of TiO2 nanoparticles in the plant extract/TiO2 nanocomposites. UV-visible investigations have shown an enhanced photocatalytic activity of plant extract/TiO2 nanocomposites compared to that of pure TiO2 and pure plant extract. Plant extract/TiO2 nanocomposites have shown various level of antibacterial activity on different test microorganisms. The highest antibacterial potentiality expressed in terms of zone of inhibition (ZOI) in mm was exhibited by the aqueous extract of Bauhinia variegata /TiO2 (45 mm against Enterococcus faecalis and 30 mm against Escherichia coli) and benzene extract of Tinospora cordifolia /TiO2 (26 mm) nanocomposites. This is the first study on these types of bio-nano composite materials and it serves as basis for further research on these types of composite materials as a potent antibacterial agent.
References
Fisher K, Phillips C. The ecology, epidemiology and virulence of Enterococcus. Microbiology 2009; 155(Pt 6): 1749-57. http://dx.doi.org/10.1099/mic.0.026385-0 DOI: https://doi.org/10.1099/mic.0.026385-0
Ryan KJ, Ray CG, Ed. Sherris Medical Microbiology (4th ed.), McGraw Hill, 2004; pp. 294-295. ISBN 0-8385-8529-9.
Willett HP. Energy metabolism. In: Joklik WK, Willett HP, Amos DB, Wilfert CM, Eds. Zinsser microbiology. 20th ed. East Norwalk (CT): Appleton & Lange 1992; pp. 53-75.
Manning SAI, Heymann D, Escherichia Coli Infections (Deadly Diseases and Epidemics). Chelsea House Publications: New York 2004.
Cho M, Kim J, Kim JY, Yoon J, Kim JH. Mechanisms of Escherichia coli inactivation by several disinfectants. Water Res 2010; 44(11): 3410-8. http://dx.doi.org/10.1016/j.watres.2010.03.017 DOI: https://doi.org/10.1016/j.watres.2010.03.017
Boettcher H. Bioactive sol-gel coatings. J Prakt Chem 2000; 342: 427-36. http://dx.doi.org/10.1002/chin.200040296 DOI: https://doi.org/10.1002/1521-3897(200006)342:5<427::AID-PRAC427>3.0.CO;2-B
Couto DS, Alves NM, Mano JF. Nanostructured multilayer coatings combining chitosan with bioactive glass nanoparticles. J Nanosci Nanotechno 2008; 8: 1-8.
Chan G, Mooney DJ, New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol 2008; 26: 382-92. http://dx.doi.org/10.1016/j.tibtech.2008.03.011 DOI: https://doi.org/10.1016/j.tibtech.2008.03.011
Khan SUM, Al-Shahry M, Ingler WB Jr. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science 2002; 297: 2243-45. http://dx.doi.org/10.1126/science.1075035 DOI: https://doi.org/10.1126/science.1075035
Hou K, Tian BZ, Li FY, Bian ZQ, Zhao DY, Huang CH. Highly crystallized mesoporous TiO2 films and their applications in dye sensitized solar cells. J Mater Chem 2005; 15: 2414-20. http://dx.doi.org/10.1039/b417465h DOI: https://doi.org/10.1039/b417465h
Liu S, Chen A. Coadsorption of Horseradish Peroxidase with Thionine on TiO2 Nanotubes for Biosensing. Langmuir 2005; 21: 8409-13. http://dx.doi.org/10.1021/la050875x DOI: https://doi.org/10.1021/la050875x
Topoglidis E, Cass AEG. Gilardi G, Sadeghi S, Beaumont N, Durrant JR. Protein Adsorption on Nanocrystalline TiO2 Films: An Immobilization Strategy for Bioanalytical Devices. Anal Chem 1998; 70: 5111-13. http://dx.doi.org/10.1021/ac980764l DOI: https://doi.org/10.1021/ac980764l
McKenzie KJ, Marken F. Accumulation and Reactivity of the Redox Protein Cytochrome c in Mesoporous Films of TiO2 Phytate. Langmuir 2003; 19: 4327-31. http://dx.doi.org/10.1021/la0267903 DOI: https://doi.org/10.1021/la0267903
Caballero L, Whitehead KA, Allen NS, Verran J. Photoinactivation of Escherichia coli on acrylic paint formulations using fluorescent light. Dyes Pigments 2010; 86: 56-62. http://dx.doi.org/10.1016/j.dyepig.2009.12.001 DOI: https://doi.org/10.1016/j.dyepig.2009.12.001
Labille J, Feng J, Botta C, et al. Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environ Pollut 2010; 158: 3482-89. http://dx.doi.org/10.1016/j.envpol.2010.02.012 DOI: https://doi.org/10.1016/j.envpol.2010.02.012
Zhu X, Wang J, Zhang X, Chang Y, Chen Y. Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 2010; 79: 928-33. http://dx.doi.org/10.1016/j.chemosphere.2010.03.022 DOI: https://doi.org/10.1016/j.chemosphere.2010.03.022
Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 2010; 78: 209-15. http://dx.doi.org/10.1016/j.chemosphere.2009.11.013 DOI: https://doi.org/10.1016/j.chemosphere.2009.11.013
Gonçalves DM, Chiasson S, Girard D. Activation of human neutrophils by titanium dioxide (TiO2) nanoparticles. Toxicol In Vitro 2010; 24: 1002-1008. http://dx.doi.org/10.1016/j.tiv.2009.12.007 DOI: https://doi.org/10.1016/j.tiv.2009.12.007
Zhu R-R, Wang W-R, Sun X-Y, Liu H, Wang S-L. Enzyme activity inhibition and secondary structure disruption of nano-TiO2 on pepsin. Toxicol In Vitro 2010; 24: 1639-47. http://dx.doi.org/10.1016/j.tiv.2010.06.002 DOI: https://doi.org/10.1016/j.tiv.2010.06.002
Demetrescu I, Pirvu C, Mitran V. Effect of nano-topographical features of Ti/TiO2 electrode surface on cell response and electrochemical stability in artificial saliva. Bioelectrochemistry 2010; 79: 122-29. http://dx.doi.org/10.1016/j.bioelechem.2010.02.001 DOI: https://doi.org/10.1016/j.bioelechem.2010.02.001
Sunada K, Watanabe T, Hashimoto K. Bactericidal Activity of Copper-Deposited TiO2 Thin Film under Weak UV Light Illumination. Environ Sci Technol 2003; 37(20): 4785-89. http://dx.doi.org/10.1021/es034106g DOI: https://doi.org/10.1021/es034106g
Lin H, Xu Z, Wang X, et al. Photocatalytic and antibacterial properties of medical-grade PVC material coated with TiO2 film. J Biomed Mater Res B Appl Biomater 2008; 87(2): 425-31. http://dx.doi.org/10.1002/jbm.b.31120 DOI: https://doi.org/10.1002/jbm.b.31120
Linkous AC, Carter GJ, Locuson DB, Ouellette AJ, Slattery D, Simitha LA. Photocatalytic Inhibition of Algae Growth Using TiO2, WO3, and Cocatalyst Modifications. Environ Sci Technol 2000; 34(22): 4754. http://dx.doi.org/10.1021/es001080+ DOI: https://doi.org/10.1021/es001080+
Matsunaga T, Tomoda R, Nakajima T, Wake H. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 1985; 29: 211-16. http://dx.doi.org/10.1111/j.1574-6968.1985.tb00864.x DOI: https://doi.org/10.1111/j.1574-6968.1985.tb00864.x
Kim DS, Kwak SY. Photocatalytic Inactivation of E. coli with a Mesoporous TiO2 Coated Film Using the Film Adhesion Method. Environ Sci Technol 2009; 43: 148-51. http://dx.doi.org/10.1021/es801029h DOI: https://doi.org/10.1021/es801029h
Egerton TA, Kosa SAM, Christensen PA. Photoelectrocatalytic disinfection of E. colisuspensions by iron doped TiO2. Phys Chem Chem Phys 2006; 8: 398-406. http://dx.doi.org/10.1039/b507516e DOI: https://doi.org/10.1039/B507516E
Caballero L, Whitehead KA, Allen NS, Verran J. Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J Photochem Photobiol A: Chem 2009; 202: 92-98. http://dx.doi.org/10.1016/j.jphotochem.2008.11.005 DOI: https://doi.org/10.1016/j.jphotochem.2008.11.005
Armelon L, et al. Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology 2007; 18: 375709. http://dx.doi.org/10.1088/0957-4484/18/37/375709 DOI: https://doi.org/10.1088/0957-4484/18/37/375709
Maneerat C, Hayata Y. Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit test. Int J Food Microbiol 2006; 107: 99-103. http://dx.doi.org/10.1016/j.ijfoodmicro.2005.08.018 DOI: https://doi.org/10.1016/j.ijfoodmicro.2005.08.018
Kangwansupamonkon W, et al. Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomed Nanotechnol Biol Med 2009; 5: 240-49. http://dx.doi.org/10.1016/j.nano.2008.09.004
Wu B, Huang R, et al. Bacterial responses to Cu-doped TiO2 nanoparticles. Sci Total Environ 2010; 408: 1755-58. http://dx.doi.org/10.1016/j.scitotenv.2009.11.004 DOI: https://doi.org/10.1016/j.scitotenv.2009.11.004
Su W, Wang S, Wang X, Fu X, Weng J. Plasma pre-treatment and TiO2 coating of PMMA for the improvement of antibacterial properties. Surface Coatings Technol 2010; 205: 465-69. http://dx.doi.org/10.1016/j.surfcoat.2010.07.013 DOI: https://doi.org/10.1016/j.surfcoat.2010.07.013
Jañczyk A, Wolnicka-Glubisz A, Urbanska K, Kisch H, Stochel G, Macyk W. Photodynamic activity of platinum(IV) chloride surface-modified TiO2 irradiated with visible light. Free Radical Biol Med 2008; 44: 1120-30. http://dx.doi.org/10.1016/j.freeradbiomed.2007.12.019 DOI: https://doi.org/10.1016/j.freeradbiomed.2007.12.019
Kangwansupamonkon W, Lauruengtana V, Surassmo S, Ruktanonchai U. Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomed Nanotechnol Biol Med 2009; 5: 240-49. http://dx.doi.org/10.1016/j.nano.2008.09.004 DOI: https://doi.org/10.1016/j.nano.2008.09.004
Cushnie TPT, Robertson PKJ, Ofcer S, Pollard PM, McCullagh C, Robertson JMC. Variables to be considered when assessing the photocatalytic destruction of bacterial pathogens. Chemosphere 2009; 74: 1374-78. http://dx.doi.org/10.1016/j.chemosphere.2008.11.012 DOI: https://doi.org/10.1016/j.chemosphere.2008.11.012
Xekoukoulotakis NP, Xinidis N, Chroni M, et al. UV-A/TiO2 photocatalytic decomposition of erythromycin in water: Factors affecting mineralization and antibiotic activity. Catal Today 2010; 151: 29-33. http://dx.doi.org/10.1016/j.cattod.2010.01.040 DOI: https://doi.org/10.1016/j.cattod.2010.01.040
Ortega-Lara W, Corte´s-Herna´ndez DA, Best S, Brooks R, Herna´ndez-Ramý´rez A. Antibacterial properties, in vitro bioactivity and cell proliferation of titania–wollastonite composites. Ceram Int 2010; 36: 513-19. http://dx.doi.org/10.1016/j.ceramint.2009.09.024 DOI: https://doi.org/10.1016/j.ceramint.2009.09.024
Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 2010; 42: 586-91. http://dx.doi.org/10.1016/j.soilbio.2009.12.007 DOI: https://doi.org/10.1016/j.soilbio.2009.12.007
Zhang HJ, Wen DZ. Antibacterial properties of Sb-TiO2 thin films by RF magnetron co-sputtering. Surface Coatings Technol 2007; 201: 5720-23. http://dx.doi.org/10.1016/j.surfcoat.2006.07.109 DOI: https://doi.org/10.1016/j.surfcoat.2006.07.109
Akhavan O. Lasting antibacterial activity of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar irradiation. J Colloidal Interf Sci 2009; 336: 117-24. http://dx.doi.org/10.1016/j.jcis.2009.03.018 DOI: https://doi.org/10.1016/j.jcis.2009.03.018
Skorb EV, Antonouskaya LI, Belyasova NA, Shchukin DG, Mohwald H, Sviridov DV. Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2:In2O3 nanocomposite. Appl Catal B: Environ 2008; 84: 94-99. http://dx.doi.org/10.1016/j.apcatb.2008.03.007 DOI: https://doi.org/10.1016/j.apcatb.2008.03.007
Cheng Q, Li C, Pavlinek V, Saha P, Wang H. Surface-modified antibacterial TiO2/Ag+ nanoparticles:Preparation and properties. Appl Surface Sci 2006; 252: 4154-60. http://dx.doi.org/10.1016/j.apsusc.2005.06.022 DOI: https://doi.org/10.1016/j.apsusc.2005.06.022
Dunnill CWH, Aiken ZA, Pratten J, Wilson M, Morgan DJ, Parkin IP. Enhanced photocatalytic activity under visible light in N-doped TiO2 thin films produced by APCVD preparations using t-butylamine as a nitrogen source and their potential for antibacterial films. J Photochem Photobiol A: Chem 2009; 207: 244-53. http://dx.doi.org/10.1016/j.jphotochem.2009.07.024 DOI: https://doi.org/10.1016/j.jphotochem.2009.07.024
Mishra AK, Mishra A, Bhargava A, Pandey AK. Antimicrobial activity of essential oils from the leaves of Cinnamomum spp. Natl Acad Sci Lett 2008; 31: 341-45.
Mishra A, Kumar S, Bhargava A, Sharma B, Pandey AK. Studies on in vitro antioxidant and antistaphylococcal activities of some important medicinal plants. Cell Mol Biol 2011; 57: 16-24.
Warren BE. X-Ray Diffraction (New York: Dover) 1990; p. 251.
Zhang Y, Xiong G, Yao N, Yang W, Fu X. Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol-gel method. Catal Today 2001; 68: 89-95. http://dx.doi.org/10.1016/S0920-5861(01)00295-4 DOI: https://doi.org/10.1016/S0920-5861(01)00295-4
Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 1999; 65: 4094-98. DOI: https://doi.org/10.1128/AEM.65.9.4094-4098.1999
Comparelli R, Fanizza E, Curri ML, et al. Photocatalytic degradation of azo dyes by organic-capped anatase TiO2 nanocrystals immobilized onto substrates. Appl Catal B 2005; 55: 81-91. http://dx.doi.org/10.1016/j.apcatb.2004.07.011 DOI: https://doi.org/10.1016/j.apcatb.2004.07.011
Haick H, Paz Y. Remote Photocatalytic Activity as Probed by Measuring the Degradation of Self-Assembled Monolayers Anchored Near Micro-Domains of Titanium Dioxide. J Phys Chem B 2001; 105: 3045-51. http://dx.doi.org/10.1021/jp0037807 DOI: https://doi.org/10.1021/jp0037807
Wong M-S, Chu W-C, Sun D-S, et al. Visible-Light-Induced Bactericidal Activity of a Nitrogen-Doped Titanium Photocatalyst against Human Pathogens. Appl Environ Microbiol 2006; 72: 6111-16. http://dx.doi.org/10.1128/AEM.02580-05 DOI: https://doi.org/10.1128/AEM.02580-05
Lu ZX, Zhou L, Zhang ZL, et al. Cell Damage Induced by Photocatalysis of TiO2 Thin Films. Langmuir 2003; 19: 8765-68. http://dx.doi.org/10.1021/la034807r DOI: https://doi.org/10.1021/la034807r
Fu G, Vary PS, Lin C-T. Anatase TiO2 Nanocomposites for Antimicrobial Coatings. J Phys Chem B 2005; 109(18): 8889-98. http://dx.doi.org/10.1021/jp0502196 DOI: https://doi.org/10.1021/jp0502196
Adams LK, Lyon DY, Alvarez PJJ. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 2006; 40: 3527-32. http://dx.doi.org/10.1016/j.watres.2006.08.004 DOI: https://doi.org/10.1016/j.watres.2006.08.004
Schwarz S, Noble WC. Aspects of bacterial resistance to antimicrobials used in veterinary dermatological practice. Veterin Dermatol 1999; 10: 163-76. http://dx.doi.org/10.1046/j.1365-3164.1999.00170.x DOI: https://doi.org/10.1046/j.1365-3164.1999.00170.x
Devasagayam TPA, Boloor KK, Ramsarma T. Methods for estimating lipid peroxidation: Analysis of merits and demerits (mini review). Ind J Biochem Biophys 2004; 40: 300-308.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2012 Archana Maurya, Pratima Chauhan, Amita Mishra, Abhay K. Pandey
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .