Applied TEM Approach for Micro/Nanostructural Characterization of Carbon Nanotube Reinforced Cementitious Composites

Authors

  • Nirupam Aich Department of Civil and Environmental Engineering, University of South Carolina, SC 29208, Columbia
  • Nima Zohhadi Department of Civil and Environmental Engineering, University of South Carolina, SC 29208, Columbia
  • Iftheker A. Khan Department of Civil and Environmental Engineering, University of South Carolina, SC 29208, Columbia
  • Fabio Matta Department of Civil and Environmental Engineering, University of South Carolina, SC 29208, Columbia
  • Paul Ziehl Department of Civil and Environmental Engineering, University of South Carolina, SC 29208, Columbia
  • Navid B. Saleh Department of Civil and Environmental Engineering, University of South Carolina, SC 29208, Columbia

DOI:

https://doi.org/10.6000/1929-5995.2012.01.01.3

Keywords:

Carbon nanotube, nano-reinforcement, cementitious materials, TEM, colloidal technique.

Abstract

A novel colloidal technique for transmission electron microscopy (TEM) of graphitic nano-reinforced cementitious (GNRC) composites was developed. Single-walled and multiwalled nanotubes (SWNTs and MWNTs) were functionalized using an acid etching technique to obtain stable aqueous suspensions that were incorporated in the mix design of a cement paste. Effective functionalization was demonstrated by Raman spectroscopic measurements and time resolved dynamic light scattering measurements. The functionalized nano-reinforcement and binding characteristics were observed at the nanoscale for the first time using high resolution TEM imaging. Functionalized CNTs were found to be well distributed and preferentially associated with the cementitious matrix. This newly developed colloidal technique for TEM imaging of GNRC composites is a viable approach to characterize the interfacial compatibility between graphitic nano-reinforcement and cementitious matrices.

References

Sanchez F, Sobolev K. Nanotechnology in concrete - A review. Constr Build Mater 2010; 24(11): 2060-71. http://dx.doi.org/10.1016/j.conbuildmat.2010.03.014 DOI: https://doi.org/10.1016/j.conbuildmat.2010.03.014

Konsta-Gdoutos MS, Metaxa ZS, Shah SP. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem Concr Compos 2010; 32(2): 110-15. http://dx.doi.org/10.1016/j.cemconcomp.2009.10.007 DOI: https://doi.org/10.1016/j.cemconcomp.2009.10.007

Tyson BM, Abu Al-Rub RK, Yazdanbakhsh A, Grasley Z. Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. J Mater Civ Eng 2011; 23(7): 1028-35. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000266 DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000266

Metaxa ZS, Konsta-Gdoutos MS, Shah SP. Mechanical properties and nanostructure of cement-based materials reinforced with carbon nanofibers and polyvinyl alcohol (PVA) microfibers. Am Concr Instit Special Publ 2010; 270: 115-24.

Musso S, Tulliani JM, Ferro G, Tagliaferro A. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos Sci Technol 2009; 69(11-12): 1985-90. http://dx.doi.org/10.1016/j.compscitech.2009.05.002 DOI: https://doi.org/10.1016/j.compscitech.2009.05.002

Li GY, Wang PM, Zhao XH. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 2005; 43(6): 1239-45. http://dx.doi.org/10.1016/j.carbon.2004.12.017 DOI: https://doi.org/10.1016/j.carbon.2004.12.017

Li GY, Wang PM, Zhao XH. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem Concr Compos 2007; 29(5): 377-82. http://dx.doi.org/10.1016/j.cemconcomp.2006.12.011 DOI: https://doi.org/10.1016/j.cemconcomp.2006.12.011

Gao D, Sturm M, Mo YL. Electrical resistance of carbon-nanofiber concrete (vol 18, 095039, 2010). Smart Mater Struct 2011; 20(4). http://dx.doi.org/10.1088/0964-1726/20/4/049501 DOI: https://doi.org/10.1088/0964-1726/20/4/049501

Li KZ, Wang C, Li HJ, Li XT, Ouyang HB, Wei J. Effect of chemical vapor deposition treatment of carbon fibers on the reflectivity of carbon fiber-reinforced cement-based composites. Compos Sci Technol 2008; 68(5): 1105-14. http://dx.doi.org/10.1016/j.compscitech.2007.08.003 DOI: https://doi.org/10.1016/j.compscitech.2007.08.003

Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater Sci Eng R-Rep 2005; 49(4): 89-112. http://dx.doi.org/10.1016/j.mser.2005.04.002 DOI: https://doi.org/10.1016/j.mser.2005.04.002

Konsta-Gdoutos MS, Metaxa ZS, Shah SP. Highly dispersed carbon nanotube reinforced cement based materials. Cem Concr Res 2010; 40(7): 1052-59. http://dx.doi.org/10.1016/j.cemconres.2010.02.015 DOI: https://doi.org/10.1016/j.cemconres.2010.02.015

Richardson IG, Groves GW. Microstructure and microanalysis of hardened ordinary portland-cement pastes. J Mater Sci 1993; 28(1): 265-77. http://dx.doi.org/10.1007/BF00349061 DOI: https://doi.org/10.1007/BF00349061

Richardson IG, Groves GW. The structure of the calcium silicate hydrate phases present in hardened pastes of white Portland cement blast-furnace slag blends. J Mater Sci 1997; 32(18): 4793-802. http://dx.doi.org/10.1023/A:1018639232570 DOI: https://doi.org/10.1023/A:1018639232570

Aich N, Flora JRV, Saleh NB. Preparation and characterization of stable aqueous higher-order fullerenes. Nanotechnology 2012; 23(055705). DOI: https://doi.org/10.1088/0957-4484/23/5/055705

Rinzler AG, Liu J, Dai H, et al. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A-Mater Sci Process 1998; 67(1): 29-37. http://dx.doi.org/10.1007/s003390050734 DOI: https://doi.org/10.1007/s003390050734

Wang ZL. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 2000; 104(6): 1153-75. http://dx.doi.org/10.1021/jp993593c DOI: https://doi.org/10.1021/jp993593c

Srikrishna K, Thomas G, Martinez R, Corral MP, Deaza S, Moya JS. Kaolinite mullite reaction-series - A TEM study. J Mater Sci 1990; 25(1B): 607-12. http://dx.doi.org/10.1007/BF00714083 DOI: https://doi.org/10.1007/BF00714083

Legros M, Gianola DS, Hemker KJ. In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 2008; 56(14): 3380-93. http://dx.doi.org/10.1016/j.actamat.2008.03.032 DOI: https://doi.org/10.1016/j.actamat.2008.03.032

Akita T, Hiroki T, Tanaka S, et al. Analytical TEM observation of Au-Pd nanoparticles prepared by sonochemical method. Catal Today 2008; 131(1-4): 90-97. http://dx.doi.org/10.1016/j.cattod.2007.10.033 DOI: https://doi.org/10.1016/j.cattod.2007.10.033

Engelmann HJ, Saage H, Zschech E. Application of analytical TEM for failure analysis of semiconductor device structures. Microelectron Reliab 2000; 40(8-10): 1747-51. http://dx.doi.org/10.1016/S0026-2714(00)00107-4 DOI: https://doi.org/10.1016/S0026-2714(00)00107-4

Cabibbo M, Spigarelli S. A TEM quantitative evaluation of strengthening in an Mg-RE alloy reinforced with SIC. Mater Charact 2011; 62(10): 959-69. http://dx.doi.org/10.1016/j.matchar.2011.04.011 DOI: https://doi.org/10.1016/j.matchar.2011.04.011

Daniel IM, Miyagawa H, Gdoutos EE, Luo JJ. Processing and characterization of epoxy/clay nanocomposites. Exp Mech 2003; 43(3): 348-54. http://dx.doi.org/10.1007/BF02410534 DOI: https://doi.org/10.1007/BF02410534

Mendez-Vilas A, Diaz J. Modern Research and Educational Topics in Microscopy. Microscopy Book Series, vol. 1 Mendez-Vilas, A. Diaz, J.: Formatex Research Center 2007. pp. 122-131.

Chen GX, Kim HS, Park BH, Yoon JS. Multi-walled carbon nanotubes reinforced nylon 6 composites. Polymer 2006; 47(13): 4760-67. http://dx.doi.org/10.1016/j.polymer.2006.04.020 DOI: https://doi.org/10.1016/j.polymer.2006.04.020

Baji A, Mai YW, Wong SC, Abtahi M, Du XS. Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers. Compos Sci Technol 2010; 70(9): 1401-409. http://dx.doi.org/10.1016/j.compscitech.2010.04.020 DOI: https://doi.org/10.1016/j.compscitech.2010.04.020

Broza G. Thermoplastic elastomers with multi-walled carbon nanotubes: Influence of dispersion methods on morphology. Compos Sci Technol 2010; 70(6): 1006-10. http://dx.doi.org/10.1016/j.compscitech.2010.02.021 DOI: https://doi.org/10.1016/j.compscitech.2010.02.021

Ye YP, Chen HB, Wu JS, Ye L. High impact strength epoxy nanocomposites with natural nanotubes. Polymer 2007; 48(21): 6426-33. http://dx.doi.org/10.1016/j.polymer.2007.08.035 DOI: https://doi.org/10.1016/j.polymer.2007.08.035

Kornmann X, Lindberg H, Berglund LA. Synthesis of epoxy-clay nanocomposites: influence of the nature of the clay on structure. Polymer 2001; 42(4): 1303-10. http://dx.doi.org/10.1016/S0032-3861(00)00346-3 DOI: https://doi.org/10.1016/S0032-3861(00)00346-3

Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G. The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer 2007; 48(19): 5662-70. http://dx.doi.org/10.1016/j.polymer.2007.06.073 DOI: https://doi.org/10.1016/j.polymer.2007.06.073

Li J, Malis T, Dionne S. Recent advances in FIB-TEM specimen preparation techniques. Mater Charact 2006; 57(1): 64-70. http://dx.doi.org/10.1016/j.matchar.2005.12.007 DOI: https://doi.org/10.1016/j.matchar.2005.12.007

Walker JF, Reiner JC, Solenthaler C. Focused ion beam sample preparation for TEM. In: Cullis AG, StatonBevan AE, editors. Microscopy of Semiconducting Materials 1995; vol. 146: Bristol: Iop Publishing Ltd; 1995; pp. 629-634.

Wirth R. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 2009; 261(3-4): 217-29. http://dx.doi.org/10.1016/j.chemgeo.2008.05.019 DOI: https://doi.org/10.1016/j.chemgeo.2008.05.019

Thangadurai P, Lumelsky Y, Silverstein MS, Kaplan WD. TEM specimen preparation of semiconductor-PMMA-metal interfaces. Mater Charact 2008; 59(11): 1623-29. http://dx.doi.org/10.1016/j.matchar.2008.02.007 DOI: https://doi.org/10.1016/j.matchar.2008.02.007

Nochaiya T, Chaipanich A. Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Appl Surf Sci 2011; 257(6): 1941-45. http://dx.doi.org/10.1016/j.apsusc.2010.09.030 DOI: https://doi.org/10.1016/j.apsusc.2010.09.030

Metaxa ZS, Konsta-Gdoutos MS, Shah SP. Carbon nanofiber-reinforced cement-based materials. Transp Res Record 2010(2142): 114-18. http://dx.doi.org/10.3141/2142-17 DOI: https://doi.org/10.3141/2142-17

Luo JL, Duan ZD, Li H. The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites. Phys Status Solidi A-Appl Mat 2009; 206(12): 2783-90. DOI: https://doi.org/10.1002/pssa.200824310

Grabar KC, Brown KR, Keating CD, Stranick SJ, Tang SL, Natan MJ. Nanoscale characterization of gold colloid monolayers: A comparison of four techniques. Anal Chem 1997; 69(3): 471-77. http://dx.doi.org/10.1021/ac9605962 DOI: https://doi.org/10.1021/ac9605962

Langley LA, Fairbrother DH. Effect of wet chemical treatments on the distribution of surface oxides on carbonaceous materials. Carbon 2007; 45(1): 47-54. http://dx.doi.org/10.1016/j.carbon.2006.08.008 DOI: https://doi.org/10.1016/j.carbon.2006.08.008

Decker JE, Walker ARH, Bosnick K, et al. Sample preparation protocols for realization of reproducible characterization of single-wall carbon nanotubes. Metrologia 2009; 46(6): 682-92. http://dx.doi.org/10.1088/0026-1394/46/6/011 DOI: https://doi.org/10.1088/0026-1394/46/6/011

Saleh NB, Pfefferle LD, Elimelech M. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: Measurements and environmental implications. Environ Sci Technol 2008; 42(21): 7963-69. http://dx.doi.org/10.1021/es801251c DOI: https://doi.org/10.1021/es801251c

Saleh NB, Pfefferle LD, Elimelech M. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 2010; 44(7): 2412-18. http://dx.doi.org/10.1021/es903059t DOI: https://doi.org/10.1021/es903059t

LeBlanc RJ, Chu W, Williams CT. Surface Raman characterization of cinchonidine-modified platinum in ethanol: effects of liquid-phase concentration and co-adsorbed hydrogen. J Mol Catal A-Chem 2004; 212(1-2): 277-89. http://dx.doi.org/10.1016/j.molcata.2003.11.006 DOI: https://doi.org/10.1016/j.molcata.2003.11.006

Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann SR, Fairbrother DH. Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 2011; 49(1): 24-36. http://dx.doi.org/10.1016/j.carbon.2010.08.034 DOI: https://doi.org/10.1016/j.carbon.2010.08.034

Liu J, Rinzler AG, Dai HJ, et al. Fullerene pipes. Science 1998; 280(5367): 1253-56. http://dx.doi.org/10.1126/science.280.5367.1253 DOI: https://doi.org/10.1126/science.280.5367.1253

Hennrich F, Krupke R, Arnold K, et al. The mechanism of cavitation-induced scission of single-walled carbon nanotubes. J Phys Chem B 2007; 111(8): 1932-37. http://dx.doi.org/10.1021/jp065262n DOI: https://doi.org/10.1021/jp065262n

Zhang J, Zou HL, Qing Q, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 2003; 107(16): 3712-18. http://dx.doi.org/10.1021/jp027500u DOI: https://doi.org/10.1021/jp027500u

Shelimov KB, Esenaliev RO, Rinzler AG, Huffman CB, Smalley RE. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem Phys Lett 1998; 282(5-6): 429-34. http://dx.doi.org/10.1016/S0009-2614(97)01265-7 DOI: https://doi.org/10.1016/S0009-2614(97)01265-7

Ziegler KJ, Gu ZN, Peng HQ, Flor EL, Hauge RH, Smalley RE. Controlled oxidative cutting of single-walled carbon nanotubes. J Am Chem Soc 2005; 127(5): 1541-47. http://dx.doi.org/10.1021/ja044537e DOI: https://doi.org/10.1021/ja044537e

Giordani S, Colomer J-F, Cattaruzza F, et al. Multifunctional hybrid materials composed of [60]fullerene-based functionalized-single-walled carbon nanotubes. Carbon 2009; 47(3): 578-88. http://dx.doi.org/10.1016/j.carbon.2008.10.036 DOI: https://doi.org/10.1016/j.carbon.2008.10.036

Moonoosawmy KR, Kruse P. Ambiguity in the characterization of chemically modified single-walled carbon nanotubes: A Raman and ultraviolet-visible-near-infrared study. J Phys Chem C 2009; 113(13): 5133-40. http://dx.doi.org/10.1021/jp810900b DOI: https://doi.org/10.1021/jp810900b

Hennrich F, Krupke R, Lebedkin S, et al. Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J Phys Chem B 2005; 109(21): 10567-73. http://dx.doi.org/10.1021/jp0441745 DOI: https://doi.org/10.1021/jp0441745

Canete-Rosales P, Ortega V, Alvarez-Lueje A, et al. Influence of size and oxidative treatments of multi-walled carbon nanotubes on their electrocatalytic properties. Electrochim Acta 2012; 62: 163-71. http://dx.doi.org/10.1016/j.electacta.2011.12.043 DOI: https://doi.org/10.1016/j.electacta.2011.12.043

Wang SR, Liang R, Wang B, Zhang C. Dispersion and thermal conductivity of carbon nanotube composites. Carbon 2009; 47(1): 53-57. http://dx.doi.org/10.1016/j.carbon.2008.08.024 DOI: https://doi.org/10.1016/j.carbon.2008.08.024

Smith B, Wepasnick K, Schrote KE, et al. Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes. Environ Sci Technol 2009; 43(3): 819-25. http://dx.doi.org/10.1021/es802011e DOI: https://doi.org/10.1021/es802011e

Smith B, Wepasnick K, Schrote KE, Cho HH, Ball WP, Fairbrother DH. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: A structure-property relationship. Langmuir 2009; 25(17): 9767-76. http://dx.doi.org/10.1021/la901128k DOI: https://doi.org/10.1021/la901128k

Brady-Estevez AS, Schnoor MH, Vecitis CD, Saleh NB, Ehmelech M. Multiwalled carbon nanotube filter: Improving viral removal at low pressure. Langmuir 2010; 26(18): 14975-82. http://dx.doi.org/10.1021/la102783v DOI: https://doi.org/10.1021/la102783v

Marshall MW, Popa-Nita S, Shapter JG. Measurement of functionalised carbon nanotube carboxylic acid groups using a simple chemical process. Carbon 2006; 44(7): 1137-41. http://dx.doi.org/10.1016/j.carbon.2005.11.010 DOI: https://doi.org/10.1016/j.carbon.2005.11.010

O'Keefe MA, Hetherington CJD, Wang YC, et al. Sub-Angstrom high-resolution transmission electron microscopy at 300 keV. Ultramicroscopy 2001; 89(4): 215-41. http://dx.doi.org/10.1016/S0304-3991(01)00094-8 DOI: https://doi.org/10.1016/S0304-3991(01)00094-8

Chaipanich A, Nochaiya T, Wongkeo W, Torkittikul P. Compressive strength and microstructure of carbon nanotubes-fly ash cement composites. Mater Sci Eng A-Struct Mater Prop Microstruct Process 2010; 527(4-5): 1063-67. http://dx.doi.org/10.1016/j.msea.2009.09.039 DOI: https://doi.org/10.1016/j.msea.2009.09.039

Mojumdar SC, Raki L. Synthesis, thermal and structural characterization of nanocomposites for potential applications in construction. J Therm Anal Calorim 2006; 86(3): 651-57. http://dx.doi.org/10.1007/s10973-006-7720-1 DOI: https://doi.org/10.1007/s10973-006-7720-1

Han BG, Yu X, Kwon E. A self-sensing carbon nanotube/ cement composite for traffic monitoring. Nanotechnology 2009; 20(44). http://dx.doi.org/10.1088/0957-4484/20/44/445501 DOI: https://doi.org/10.1088/0957-4484/20/44/445501

Downloads

Published

2012-11-01

How to Cite

Aich, N., Zohhadi, N., Khan, I. A., Matta, F., Ziehl, P., & Saleh, N. B. (2012). Applied TEM Approach for Micro/Nanostructural Characterization of Carbon Nanotube Reinforced Cementitious Composites . Journal of Research Updates in Polymer Science, 1(1), 14–23. https://doi.org/10.6000/1929-5995.2012.01.01.3

Issue

Section

Articles