Real-Time Cure Monitoring of Unsaturated Polyester Resin from Ultra-Violet Curing

Authors

  • Mahmoud A Hussein Division of Bio-Resource Paper & Coatings Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
  • G. S. Tay Division of Bio-Resource Paper & Coatings Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia
  • H. D. Rozman Division of Bio-Resource Paper & Coatings Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia

DOI:

https://doi.org/10.6000/1929-5995.2012.01.01.5

Keywords:

Real time, kinetic study, ultra-violet curing, unsaturated polyester resins, thermal analyses

Abstract

Real time Fourier transform infrared (RTFT-IR) spectroscopy reveals the influence of the nature of the photoinitiator on the kinetics for the polymerization reaction. Real time cure monitoring was used to determine the polymerization rate of ultra-violet cured unsaturated polyester resins (UPR1:2-1:5) based on palm oil and containing styrene as a cross-linking agent in the presence of IRGACURE 184 photoinitiator. Firstly, variable types of UPR1:2-1:5 were prepared using various ratios of monoglyceride (MG) monomer to maleic anhydride which used as a source of double bond using polycondensation technique. RTFT-IR spectroscopy was used to characterize the ultra-violet curing kinetics for all the systems. This technique offered a powerful approach for monitoring changes in the chemical properties of the system during the ultra-violet curing. Pseudo first order kinetics for all UPR1:2-1:5 curable systems were determined and the rate constant values and regression coefficients were calculated. Furthermore, the thermal behaviour and morphological features for the photo-fabricated UPR1:2-1:5 systems were examined. The thermal analyses for the cured films were evaluated by TGA, DTG and DSC in nitrogen atmosphere at a heating rate of 10°C/min. All the formulations showed similar degradation pattern at 40 % and 50 % weight losses (Td = 40% and Td =50% respectively) except polymer UPR1:5 which had somewhat lower degree in the same range. In addition, the morphological properties for photo-fabricated UPR1:2,1:3,1:5 were investigated by using scanning electron microscopy.

Author Biography

Mahmoud A Hussein, Division of Bio-Resource Paper & Coatings Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang, 11800, Malaysia

Polymer synthesis and characterization,

  • polymer composites,
  • organometallic polymers,
  • biologically active polymers,

References

Selley J. Unsaturated polyesters. In: Mark, HF. editor. Encyclopedia of polymer science and engineering; Wiley: New York 1988; vol. 12: pp. 256-90.

Kramer H. Polyester resin, unsaturated. In: Elvers B, Hawkins S, Schulz G, editors. Ullmann`s encyclopedia of industrial chemistry; VCH: Weinheim 1992; vol. A21: pp. 217.

Bascom WD. Interphase in fibre reinforced composites. In: Lee I, Stuart M, Eds. International encyclopedia of composites; VCH: New York 1990-1991; vol. 2: pp. 411-22.

Sinha Ray S, Kundu AK, Ghosh M, Maiti S. A new route to synthesize polyamideimide from rosin. Eur Polym J 1985; 21: 131-33. http://dx.doi.org/10.1016/0014-3057(85)90042-4 DOI: https://doi.org/10.1016/0014-3057(85)90042-4

Sinha Ray S, Kundu AK, Maiti S. Polymers from renewable resources-13. Polymers from rosin acrylic acid adduct. Eur Polym J 1990; 26: 471-74. http://dx.doi.org/10.1016/0014-3057(90)90055-9 DOI: https://doi.org/10.1016/0014-3057(90)90055-9

Sinha Ray S, Kundu AK, Ghosh M, Maiti S. Polymers from renewable resources. II. Synthesis of polyamideimides by triphenylphosphine-polyhalo compound activated polycondensation. J Polym Sci Polym Chem Ed 1986; 24: 603-12. http://dx.doi.org/10.1002/pola.1986.080240403 DOI: https://doi.org/10.1002/pola.1986.080240403

Carter C, Finley W, Fry J, Jackson D, Willis L. Palm oil market and future supply. Eur J Lipid Sci Technol 2007; 109: 307-14. http://dx.doi.org/10.1002/ejlt.200600256 DOI: https://doi.org/10.1002/ejlt.200600256

Rozman DH, Tay SG, Abubakar A, Kumar NR. Tensile properties of oil palm empty fruit bunch-polyurethane composites. Eur Polym J 2001; 37: 1759-65. http://dx.doi.org/10.1016/S0014-3057(01)00063-5 DOI: https://doi.org/10.1016/S0014-3057(01)00063-5

Ismail H, Jaffri MR, Rozman DH. Oil palm wood flour filled natural rubber composites: fatigue and hysteresis behaviour. Polym Int 2000; 49: 618-22. http://dx.doi.org/10.1002/1097-0126(200006)49:6<618::AID-PI418>3.0.CO;2-# DOI: https://doi.org/10.1002/1097-0126(200006)49:6<618::AID-PI418>3.0.CO;2-#

Kumar NR, Wei ML, Rozman DH, Abubakar A. Fire resistant sheet moulding composites from hybrid reinforcements of oil palm-fibres and glass fibre. Int J Polym Mater 1997; 37: 43-52. http://dx.doi.org/10.1080/00914039708031476 DOI: https://doi.org/10.1080/00914039708031476

Rushdan I. Chemical composition of alkaline pulps from oil palm empty fruit bunches. Oil Palm Bull 2002; 44: 19-24.

Rozman HD, Rozyanty AR, Tay GS, Kumar, RN. The effect of glycidyl methacrylate treatment of empty fruit bunch (EFB) on the properties of ultra-violet radiation cured EFB-unsaturated polyester composite. J Appl Polm Sci 2010; 115: 2677-82. http://dx.doi.org/10.1002/app.29791 DOI: https://doi.org/10.1002/app.29791

Taib RM, Ramarad S, Mohd Ishak ZA, Rozman HD. Effect of immersion time in wateron the tensile properties of acetylated steam-exploded acacia mangium fibers-filled polyethylene composites. J Thermoplas Compo Mat 2009; 22: 83-98. http://dx.doi.org/10.1177/0892705708091609 DOI: https://doi.org/10.1177/0892705708091609

Rozman HD, Tay GS. You have full text access to this content. The effects of NCO/OH ratio on propylene oxide-modified oil palm empty fruit bunch-based polyurethane composites. J Appl Polm Sci 2008; 110: 3647-54. http://dx.doi.org/10.1002/app.28881 DOI: https://doi.org/10.1002/app.28881

Tay GS, Rozman HD. Swelling properties of chemically modified oil palm empty fruit bunch based polyurethane composites. J Appl Polm Sci 2008; 108: 995-1004. http://dx.doi.org/10.1002/app.28881 DOI: https://doi.org/10.1002/app.27598

Rozman HD, Faiza MA, Kumar RN. A preliminary study on ultraviolet radiation–cured biofiber composites from oil palm empty fruit bunch. Polym Plast Tech and Eng 2008; 47: 358-62. http://dx.doi.org/10.1080/03602550801897414 DOI: https://doi.org/10.1080/03602550801897414

Rozman HD, Ahmad Hilme KR, Abubakar A. Polyurethane composites based on oil palm empty fruit bunches: Effect of isocyanate/hydroxyl ratio and chemical modification of empty fruit bunches with toluene diisocyanate and hexamethylene diisocyanate on mechanical properties. J Appl Polm Sci 2007; 106: 2290-97. http://dx.doi.org/10.1002/app.25119 DOI: https://doi.org/10.1002/app.25119

Tay GS, Rozman HD. Chemical modification of oil palm empty fruit bunch: Determination of optimum condition and characterization. J Appl Polm Sci 2007; 106: 1697-706. http://dx.doi.org/10.1002/app.26825 DOI: https://doi.org/10.1002/app.26825

Davidson RS. Exploring the Science Technology and Applications of UV and EB Curing, SITA Technology: London 1999.

Decker C. In: Meijer HEH. Ed. Materials Science and Technology, VCH Verlag: Weinheim 1997; Vol 18: p. 615.

Paul P. Surface coating: science and technology, 2nd ed., Wiley: New York 1996.

Crivello VJ, Narayan R, Sternstein SS. Fabrication and mechanical characterization of glass fiber reinforced UV-cured composites from epoxidized vegetable oils. J Appl Polym Sci 1997; 64: 2073-87. http://dx.doi.org/10.1002/(SICI)1097-4628(19970613)64:11<2073::AID-APP3>3.0.CO;2-G DOI: https://doi.org/10.1002/(SICI)1097-4628(19970613)64:11<2073::AID-APP3>3.0.CO;2-G

Voytekunas-Abadie VY, Ng FL. Alternative curing methods for structural epoxy resins. SIMTech Technical Reports 2010; 11: 53-58.

Kloosterboer JG, Lijten GFCM. Thermal and mechanical analysis of a photopolymerization process. Polym 1987; 28: 1149-55. http://dx.doi.org/10.1016/0032-3861(87)90258-8 DOI: https://doi.org/10.1016/0032-3861(87)90258-8

Hoyle CE, Hensel RD, Grubb MB. Laser-initiated polymerization of a thiol-ene system. Polym Photochem 1984; 4: 69-80. http://dx.doi.org/10.1002/pol.1984.170220808 DOI: https://doi.org/10.1016/0144-2880(84)90014-9

Bowman CN, Peppas NA. Polymers for information storage systems. II. Polymerization kinetics for preparation of highly crosslinked polydimethacrylates. J. Appl Polym Sci 1991; 42: 2013-18. http://dx.doi.org/10.1002/app.1991.070420727 DOI: https://doi.org/10.1002/app.1991.070420727

Kinkelaar M, Lee LJ. Development of a dilatometer and its application to low-shrink unsaturated polyester resins. J Appl Polym Sci 1992; 45: 37-50. http://dx.doi.org/10.1002/app.1992.070450105 DOI: https://doi.org/10.1002/app.1992.070450105

Nelson EW, Carter TP, Scranton AB. Fluorescence monitoring of cationic photopolymerizations: divinyl ether polymerizations photosensitized by anthracene derivatives. Macromole 1994; 27: 1013-19. http://dx.doi.org/10.1021/ma00082a020 DOI: https://doi.org/10.1021/ma00082a020

Decker C, Decker D. Photoinitiated Polymerization of Vinyl Ether and Acrylate Monomer Mixtures. J Macromol Sci – Pure Appl Chem 1997; A34: 605-25. http://dx.doi.org/10.1080/10601329708014988 DOI: https://doi.org/10.1080/10601329708014988

Yang DB. Direct Kinetic Measurements of Vinyl Polymerization on Metal and Silicon Surfaces Using Real-Time FT-IR Spectroscopy. Appl Spectro 1993; 47: 1425-1429. http://dx.doi.org/10.1366/0003702934067739 DOI: https://doi.org/10.1366/0003702934067739

a) Crivello JV, Yang B, Kim WG. Chemoselective hydrosilations. I. Synthesis and photopolymerization of 1-propenyl ether functionalized siloxanes. J Polym Chem Part A: Polym Chem 1995; 33: 2415-23; b) Crivello JV, Yang B, Kim WG. Synthesis and electron-beam polymerization of 1-propenyl ether functional siloxanes. J Macromol Sci Part A, Pure Appl Chem 1996; 33: 399-415. http://dx.doi.org/10.1002/pola.1995.080331414 DOI: https://doi.org/10.1002/pola.1995.080331414

Grundert F, Wolf BA. In: Polymer Handbook. Brandrup J, Immergut EH, Eds. Wiley: New York 1989; p. VII/173.

Perrin DD, Armarigo WLF, Perrin DF. Purification of laboratory chemicals. 2nd ed. Pergamon: New York 1980.

Mahmoud AH, Tay GS, Rozman HD. A Preliminary Study on Ultraviolet Radiation-Cured Unsaturated Polyester Resin Based on Palm Oil. Polym Plast Tech Eng 2011; 50: 573-80. http://dx.doi.org/10.1080/03602559.2010.543740 DOI: https://doi.org/10.1080/03602559.2010.543740

Al-Muaikel NS, Aly KI, Hussein MA. Synthesis, characterization and antimicrobial properties of new poly(ether-ketone)s and copoly(ether-ketone)s containing diarylidenecycloalkanone moieties in the main chain. J Appl Polym Sci 2008; 108: 3138-47. http://dx.doi.org/10.1002/app.27963 DOI: https://doi.org/10.1002/app.27963

Decker C. Kinetic Study and New Applications of UV Radiation Curing, Macromolecular Rapid Commun 2003; 23: 1067-93. http://dx.doi.org/10.1002/marc.200290014 DOI: https://doi.org/10.1002/marc.200290014

Decker C, Bianchi C, Decker D, Morel F. Photoinitiated polymerization of vinyl ether-based systems. Progress in Organic Coatings 2001; 42: 253-66. http://dx.doi.org/10.1016/S0300-9440(01)00203-X DOI: https://doi.org/10.1016/S0300-9440(01)00203-X

Mijovic J, Kenny J, Maffezzoli A, Trivisano A, Bellucci F, Nicolais L. The principles of dielectric measurements for in situ monitoring of composite processing. Compos Sci Technol 1993; 49: 277. http://dx.doi.org/10.1016/0266-3538(93)90109-T DOI: https://doi.org/10.1016/0266-3538(93)90109-T

Abd-Alla MA, Aly KI Hammam AS. Arylidene Polymers IV. Synthesis, Characterization and Morphology of New Polyesters of Diarylidenecyclohexanone. High Perform Polym 1989; 1: 223-37. DOI: https://doi.org/10.1177/152483998900100304

Abd-Alla MA, Aly KI. Arylidene Polymers-X. Preparation and Properties of New Polyesters of Diarylidenecycloalkanones

Containing Symmetrical Bis-Azomethine Groups in the Polymer Backbone High Perform Polym 1990; 2: 181-88. DOI: https://doi.org/10.1177/152483999000200303

Bansal RK, Mittal J, Singh P. Thermal stability and degradation studies of polyester resins. J Appl Polym Sci 1989; 37: 1901-908. http://dx.doi.org/10.1002/app.1989.070370713 DOI: https://doi.org/10.1002/app.1989.070370713

Al-Muaikel NS. Synthesis and characterization of new unsaturated polyesters and copolyesters containing azo groups in the main chain. Eur Polym J 2003; 39: 1025-33. http://dx.doi.org/10.1016/S0014-3057(02)00304-X DOI: https://doi.org/10.1016/S0014-3057(02)00304-X

Aly KI, Abbady MA, Mahgoub SA, Hussein MA. New polymer syntheses, Part 44: Synthesis, characterization, and corrosion inhibition behavior of new polyurea derivatives based on diaryl ether in the polymers backbone. J Appl Polym Sci 2009; 112: 620-28. http://dx.doi.org/10.1002/app.29106 DOI: https://doi.org/10.1002/app.29106

Sancheza EMS, Zavagliaa CAC, Felisberti MI. Unsaturated polyester resins: influence of the styrene concentration on the miscibility and mechanical properties. Polym 2000; 41: 765-69. http://dx.doi.org/10.1016/S0032-3861(99)00184-6 DOI: https://doi.org/10.1016/S0032-3861(99)00184-6

Paul DR, Barlow JW, Keskkula, H. Encyclopedia of polymer science and engineering. Wiley: New York 1986.

Mikroyannidis JA. New styrylpyridine-based polyesters and polyurethanes. Eur Polym J 1988; 24: 1093-99. http://dx.doi.org/10.1016/0014-3057(88)90070-5 DOI: https://doi.org/10.1016/0014-3057(88)90070-5

Downloads

Published

2012-11-01

How to Cite

Hussein, M. A., Tay, G. S., & Rozman, H. D. (2012). Real-Time Cure Monitoring of Unsaturated Polyester Resin from Ultra-Violet Curing. Journal of Research Updates in Polymer Science, 1(1), 32–42. https://doi.org/10.6000/1929-5995.2012.01.01.5

Issue

Section

Articles