Quaternized and Unmodified Chitosans: Hydrodynamic Properties

Authors

  • N.P. Yevlampieva Faculty of Physics, St. Petersburg State University, Ulianovskaja st. 3, 198504 St. Petersburg, Russia
  • A.S. Gubarev Faculty of Physics, St. Petersburg State University, Ulianovskaja st. 3, 198504 St. Petersburg, Russia
  • M. Yu. Gorshkova Institute of Petrochemical Synthesis
  • B.M. Okrugin Faculty of Physics, St. Petersburg State University, Ulianovskaja st. 3, 198504 St. Petersburg, Russia
  • E.I. Ryumtsev Faculty of Physics, St. Petersburg State University, Ulianovskaja st. 3, 198504 St. Petersburg, Russia

DOI:

https://doi.org/10.6000/1929-5995.2015.04.01.4

Keywords:

Polysaccharides, chitosan, quaternization, hydrodynamic behavior.

Abstract

Molecular properties of N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan (modified chitosan) series with the averaged quaternization degree 90% have been studied in comparison with the unmodified chitosan series by the method of translation isothermal diffusion, viscometry and static light scattering in dilute solutions in 0.33М СН3СООН+0.2М CH3СООNa at pH 3.54. Molecular mass, translation diffusion coefficient, and hydrodynamic size of the homologues samples in the modified/unnmodified series have been determined as well as their chain rigidity and Mark-Kuhn-Houwink equations at acidic pH. It was established that the size of modified chitosan molecules might be smaller than the initial polysaccharide of an equal polymerization degree in the same solvent, which was explained by the change of thermodynamic conditions and the change of the ratio of thermodynamic/electrostatic contributions to the total chain rigidity. Quaternized chitosan molecules displayed the different hydrodynamic behavior in 0.33М СН3СООН+0.2М CH3СООNa and in 0.2M NaCl (neutral pH). Solution properties of quaternized chitosan at neutral pH had been identified as the concentration dependent. The threshold influence of the secondary amino group protonation on the hydrodynamic properties of modified chitosan molecules was detected in 0.2M NaCl at the solute concentration range 0.001-0.004 g/cm3.

Author Biography

M. Yu. Gorshkova, Institute of Petrochemical Synthesis

Petrochemical Synthesis

References

Muzarelli RAA, Muzarelli C. Chitosan chemistry: relevance to the biomedical sciences. Adv Polym Sci 2005; 186: 151-209. http://dx.doi.org/10.1007/b136820 DOI: https://doi.org/10.1007/b136820

Runarsson OV, Holappa J, Nevalainen T, et al. Antibacterial activity of methylated chitosan and chitooligomers: sythesis and structure activity relationships. Eur Polym J 2007; 43: 2660-71. http://dx.doi.org/10.1016/j.eurpolymj.2007.03.046 DOI: https://doi.org/10.1016/j.eurpolymj.2007.03.046

Jia ZS, Shen DF, Xu WL. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res 2001; 333: 1-6. http://dx.doi.org/10.1016/S0008-6215(01)00112-4 DOI: https://doi.org/10.1016/S0008-6215(01)00112-4

Xu T, Xin M, Li M, Huang H, Zho S, Liu J. Synthesis, characterization and antibacterial activity of N,O-quaternary ammonium chitosan. Carbohydr Res 2011; 346: 2445-50. http://dx.doi.org/10.1016/j.carres.2011.08.002 DOI: https://doi.org/10.1016/j.carres.2011.08.002

Avadi MR, Sadeghi AMM, Tahzibi A, et al. Diethylmethyl chitosan as an antimicrobial agent: Synthesis, characterization and antibacterial effects. Eur Polym J 2004; 40: 1355-61. http://dx.doi.org/10.1016/j.eurpolymj.2004.02.015 DOI: https://doi.org/10.1016/j.eurpolymj.2004.02.015

Wang JJ, Zeng ZW, Xiao RZ, et al. Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine 2011; 6: 765-74. DOI: https://doi.org/10.2147/IJN.S17296

Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Del Rev 2010; 62: 12-27. http://dx.doi.org/10.1016/j.addr.2009.08.004 DOI: https://doi.org/10.1016/j.addr.2009.08.004

Tong H, Qin S, Fernandes JC, Li L, Dai K, Zhang X. Progress and prospects of chitosan and its derivatives as nonviral gene vector in gene therapy. Current Gene Therapy 2009; 9: 495-502. http://dx.doi.org/10.2174/156652309790031111 DOI: https://doi.org/10.2174/156652309790031111

Belatia R, Grelier S, Benassia M, Coma V. New bioactive biomaterials based on quaternized chitosan. J Agric Food Chem 2008; 56: 1582-8. http://dx.doi.org/10.1021/jf071717+ DOI: https://doi.org/10.1021/jf071717+

Lim SH, Hudson SM. Application of fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydr Polym 2004; 56: 227-34. http://dx.doi.org/10.1016/j.carbpol.2004.02.005 DOI: https://doi.org/10.1016/j.carbpol.2004.02.005

Sieval AB, Thanou M, Kotze AF, Verhoef JC, Brussee J, Junginger HE. Preparation and NMR characterization of highly substituted N-trimethylchitosan chloride. Carbohydr Polym 1998; 36: 157-65. http://dx.doi.org/10.1016/S0144-8617(98)00009-5 DOI: https://doi.org/10.1016/S0144-8617(98)00009-5

Muzarelli RAA. In: Aspinall GO, editor. The Polysaccharides. NY: Academic Press 1985; p.3.

Gamzazade AI, Shlimak VM, Sklyar AM, Stykova EV, Pavlova SSA,Rogozhin SV. Investigation of the hydrodynamic properties of chitosan solutions. Acta Polymerica 1985; 36: 420-4. http://dx.doi.org/10.1002/actp.1985.010360805 DOI: https://doi.org/10.1002/actp.1985.010360805

Pogodina NV, Pavlov GМ, Bushin SV, et al. Conformational characteristics of chitosan molecules according to diffusion-sedimentation and viscometry data. Polym Sci Ser A 1986; 28: 232-9. DOI: https://doi.org/10.1016/0032-3950(86)90076-6

Rinaudo M, Domard A. In: Chitin and chitosan. London: Elsevier Applied Sciences 1989; p.71-86.

Buhler E, Rinaudo M. Structural and dynamical properties of semirigid polyelectrolyte solution: a light scattering study. Macromolecules 2000; 33: 2098-106. http://dx.doi.org/10.1021/ma991309+ DOI: https://doi.org/10.1021/ma991309+

Kim YH, Nam CW, Choi JW, Jang J. Durable antimicrobial treatment of cotton fabrics using N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride and polycarboxylic acids. J Appl Polym Sci 2003; 88: 1567-72. http://dx.doi.org/10.1002/app.11845 DOI: https://doi.org/10.1002/app.11845

Qin CQ, Xiao Q, Li HR, et al. Calorimetric studies of the action of chitosan-N-2-hydroxypropyltrimethyl ammonium chloride on the growth of microorganisms. Int J Biol Macromol 2004; 34: 121-6. http://dx.doi.org/10.1016/j.ijbiomac.2004.03.009 DOI: https://doi.org/10.1016/j.ijbiomac.2004.03.009

Faizuloev EB, Marova AA, Nikonova AA, Volkova IF, Gorshkova M Yu, Izumrudov VA. Water-soluble N-[(2-hydroxy)propyl-3-trimethylammonium)propyl]chitosan chloride as nucleic acid vector for cell transfection. Carbohydr Polym 2012; 89: 1088-94. http://dx.doi.org/10.1016/j.carbpol.2012.03.071 DOI: https://doi.org/10.1016/j.carbpol.2012.03.071

Huang M, Khor E, Lim LY. Uptake and cytotoxicity of chitosan molecules and nanoparticles: effect of molecular weight and degree of deacetylation. J Pharm Res 2004; 21: 344-53. http://dx.doi.org/10.1023/B:PHAM.0000016249.52831.a5 DOI: https://doi.org/10.1023/B:PHAM.0000016249.52831.a5

Gorshkova МYu, Volkova IF, Alexeeva SG, Molotkova NN, Skorikova ЕЕ, Izumrudov VА. Water-soluble modified chitosan and its interaction with polystyrenesulfonate anion. Polym Sci Ser A 2011; 53: 67-74. DOI: https://doi.org/10.1134/S0965545X11010019

Lim SH, Hudson SM. Synthesis and antimicrobial activity of water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res 2004; 339: 313-9. http://dx.doi.org/10.1016/j.carres.2003.10.024 DOI: https://doi.org/10.1016/j.carres.2003.10.024

Tsvetkov VN. Rigid-chain polymers. New York: Plenum, Consultans Bureau 1989.

Lam L, Lee SW, Suen CY. IEEE transactions on pattern analysis and machine intelligence. Thinning Methodologies. A Comprehensive Survey 1992; 14: 879-85. DOI: https://doi.org/10.1109/34.161346

Chu B. Laser Light Scattering - Basic principles and Practice. New York: Dover Publication 2007.

Yevlampieva NP, Gorshkova МYu, Volkova IF, Grigorjan ES, Khurchak АP, Rjumtsev ЕI. Molecular properties of modified chitosan containing quaternary amino groups. Polym Sci Ser A 2011; 53: 124-32. http://dx.doi.org/10.1134/S0965545X11020039 DOI: https://doi.org/10.1134/S0965545X11020039

Rinaudo M, Pavlov G, Desbrieres J. Influenece of acetic acid concentration on solubilization of chitosan. Polymer 1999; 40: 7029-32. http://dx.doi.org/10.1016/S0032-3861(99)00056-7 DOI: https://doi.org/10.1016/S0032-3861(99)00056-7

Flory PJ. Statistical Mechanics of Chain Molecules. New York: Interscience 1989.

Yamakawa H, Fujii M. Translation friction coefficient of wormlike chains. Macromolecules 1973; 6: 407-15. http://dx.doi.org/10.1021/ma60033a018 DOI: https://doi.org/10.1021/ma60033a018

de Oliveira VAV, de Morais WA, Pereira MR, Fonseca JLC. Dynamic light scattering in semidilute and concentrated chitosan solutions. Eur Pol J 2012; 48: 1932-9. http://dx.doi.org/10.1016/j.eurpolymj.2012.07.017 DOI: https://doi.org/10.1016/j.eurpolymj.2012.07.017

Philippova OE, Korchagina EV, Volkov EV, Smirnov VA, Khokhlov AR, Rinaudo M. Aggregation of some water-soluble derivetives of chitin in aqueous solutions: role of the degree of acetylation and effect of hydrogen bond breaker. Carbohydr Polym 2012; 87: 687-94. http://dx.doi.org/10.1016/j.carbpol.2011.08.043 DOI: https://doi.org/10.1016/j.carbpol.2011.08.043

Esquenet C, Buhler E. Phase behavior of associating polyelectrolyte polysaccharides. Aggregation process in dilute solution. Macromolecules 2001; 34: 5287-94. http://dx.doi.org/10.1021/ma010451j DOI: https://doi.org/10.1021/ma010451j

Downloads

Published

2015-04-17

How to Cite

Yevlampieva, N., Gubarev, A., Gorshkova, M. Y., Okrugin, B., & Ryumtsev, E. (2015). Quaternized and Unmodified Chitosans: Hydrodynamic Properties . Journal of Research Updates in Polymer Science, 4(1), 31–41. https://doi.org/10.6000/1929-5995.2015.04.01.4

Issue

Section

Articles