Nanoencapsulation of Antitumor and Antituberculosis Drug Preparations with Biocompatible Polymers
DOI:
https://doi.org/10.6000/1929-5995.2014.03.02.2Keywords:
Drug delivery systems, nanoparticles, nanocapsules, polyalkyl cyanoacrylates, human serum albumin, poly-D, L-lactic acid.Abstract
Controlled release of drugs at the locus of the targeted disease is one of the most challenging research areas in the pharmaceutical field. Nowadays novel drug delivery systems on the basis of polymers are attracting great attention since they can improve therapeutic efficiency of potent drug preparations decreasing the risk of side effects. By developing colloidal drug delivery systems such as liposomes/vesicles and polymeric nanoparticles and nanocapsules the pharmacokinetics of the drug can be changed and thus the therapeutic efficiency of the drug can be increased. Nanoparticles with their special characteristics such as small particle size, large surface area and high capacity of carrying biologically active substances offer a number of advantages compared to other colloidal drug delivery systems [1, 2].
Controlled drug release systems are constructed on the basis of natural and biocompatible synthetic polymers. Among the most promising biocompatible polymers human serum albumin (HSA), polyalkyl cyanoacrylates (PACA) and poly-D,L-lactic acid (PLA) are of great importance. Nanoparticles on their basis have been proven to be efficient in treatment of serious and long-termed diseases such as tumors, tuberculosis and bacterial infections [3-126]. Therefore this article is aimed to give a brief review on the research works devoted to the synthesis and investigation of polymeric nanoparticles and nanocapsules based on PACA, HSA and PLA for the past three decades.
References
Kreuter J. Colloidal Drug Delivery Systems. New York: Marcel Dekker; 1994.
Kingsley JD, Dou H, Morehead J, Rabinow B, Gendelman HE, Destache ChJ. Nanotechnology: A Focus on Nanoparticles as a Drug Delivery System. J. Neuroimmune Pharmacol 2006; 1: 340-50. http://dx.doi.org/10.1007/s11481-006-9032-4 DOI: https://doi.org/10.1007/s11481-006-9032-4
Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GYa, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm. Res 1999; 16(10): 1564-69. http://dx.doi.org/10.1023/A:1018983904537 DOI: https://doi.org/10.1023/A:1018983904537
Petri B, Bootz A, Khalansky A, et al. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Rel 2007; 117(1): 51-8. http://dx.doi.org/10.1016/j.jconrel.2006.10.015 DOI: https://doi.org/10.1016/j.jconrel.2006.10.015
Brasseur F, Couvreur P, Kante B, Speiser P. Actinomycin D adsorbed on polymethylcyanoacrylate nanoparticles: Increased efficiency against an experimental tumor. Eur J Cancer 1980; 16: 1441-5. http://dx.doi.org/10.1016/0014-2964(80)90053-5 DOI: https://doi.org/10.1016/0014-2964(80)90053-5
Sosnik A, Carcaboso AM, Glisoni RJ, Moretton MA, Chiappetta DA. New old challenges in tuberculosis: Potentially effective nanotechnologies in drug delivery. Adv Drug Delivery Reviews 2010; 62: 547-59. http://dx.doi.org/10.1016/j.addr.2009.11.023 DOI: https://doi.org/10.1016/j.addr.2009.11.023
Azarmi Sh, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Delivery Reviews 2008; 60: 863-75. http://dx.doi.org/10.1016/j.addr.2007.11.006 DOI: https://doi.org/10.1016/j.addr.2007.11.006
Kreuter J. Nanoparticles-a historical Perspectives. Int J Pharm 2007; 331: 1-10. http://dx.doi.org/10.1016/j.ijpharm.2006.10.021 DOI: https://doi.org/10.1016/j.ijpharm.2006.10.021
Elvira C, Gallardo A, San Roman J, Cifuentes A. Covalent Polymer-Drug Conjugates. Molecules 2005; 1: 114-25. http://dx.doi.org/10.3390/10010114 DOI: https://doi.org/10.3390/10010114
Venkatesan N, Yoshimitsu J, Ito Y, et al. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials 2005; 26(34): 7154-63. http://dx.doi.org/10.1016/j.biomaterials.2005.05.012 DOI: https://doi.org/10.1016/j.biomaterials.2005.05.012
Mohanraj VJ, Chen Y. Nanoparticles-A Review. Tropical J Pharm Res 2006; 5(1): 561-73. DOI: https://doi.org/10.4314/tjpr.v5i1.14634
Santhi K, Dhanaraj SA, Koshy M, Ponnusankar S, Suresh B. Study of biodistribution of methotrexate-loaded bovine serum albumin nanospheres in mice. Drug Dev Ind Pharm 2000; 26(12): 1293-6. http://dx.doi.org/10.1081/DDC-100102311 DOI: https://doi.org/10.1081/DDC-100102311
Gelperina SE, Kisich K, Iseman MD, Heifets L. The Potential Advantages of Nanoparticle Drug Delivery Systems in Chemotherapy of Tuberculosis. Amer J Respiratory and Critical Care Medicine 2005; 172: 1487-90. http://dx.doi.org/10.1164/rccm.200504-613PP DOI: https://doi.org/10.1164/rccm.200504-613PP
Skidan I, Gelperina S, Severin S, Gulyaev A. Increase of antibacterial activity of rifampicin towards intracellular infections with the help of biodegradable nanoparticles. Antibiotics and Chemotherapy 2003; 48, №1: 23-6.(in Russian)
Simeonova M, Ivanova G, Enchev V, et al. Physicochemical characterization and in vitro behavior of daunorubicin-loaded poly(butyl cyanoacrylate) nanoparticles. Acta Biomateria 2009; 5: 2109-21. http://dx.doi.org/10.1016/j.actbio.2009.01.026 DOI: https://doi.org/10.1016/j.actbio.2009.01.026
Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 1997; 14: 1568-73. http://dx.doi.org/10.1023/A:1012126301290 DOI: https://doi.org/10.1023/A:1012126301290
Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 1996; 13: 1838-45. http://dx.doi.org/10.1023/A:1016085108889 DOI: https://doi.org/10.1023/A:1016085108889
Behan N, Birkinshaw C. Preparation of poly(butyl cyanoacrylate) nanoparticles by aqueous dispersion polymerization in the presence of insulin. Macromol Rapid Commun 2001; 22: 3-41. http://dx.doi.org/10.1002/1521-3927(20010101)22:1<41::AID-MARC41>3.0.CO;2-B DOI: https://doi.org/10.1002/1521-3927(20010101)22:1<41::AID-MARC41>3.0.CO;2-B
Simeonova M, Velichkova R, Ivanova G, Enchev V, Abrahams I. Poly(butyl cyanoacrylate) nanoparticles for
topical delivery of 5-fluorouracil. Int J Pharm 2003; 263: 133-40. http://dx.doi.org/10.1016/S0378-5173(03)00373-9 DOI: https://doi.org/10.1016/S0378-5173(03)00373-9
Cariline OS, Birkinshaw C. In vitro degradation of insulin-loaded poly(n-butyl cyanoacrylate) nanoparticles. Biomaterials 2004; 25: 4375-82. http://dx.doi.org/10.1016/j.biomaterials.2003.11.001 DOI: https://doi.org/10.1016/j.biomaterials.2003.11.001
Alonso MJ, Losa C, Calvo P, Vila-Jato JL. Approaches to improve the association of amikacin sulphate to poly(alkylcyanoacrylate) nanoparticles. Int J Pharm 1991; 68: 69-76. http://dx.doi.org/10.1016/0378-5173(91)90128-B DOI: https://doi.org/10.1016/0378-5173(91)90128-B
Page-Clisson ME, Pinto-Alphandary H, Ourevitch M, Andremont A, Couvreur P. Development of ciprofloxacin-loaded nanoparticles: physicochemical study of the drug carrier. J Control Rel 1998; 56: 23-32. http://dx.doi.org/10.1016/S0168-3659(98)00065-0 DOI: https://doi.org/10.1016/S0168-3659(98)00065-0
Alleman E, Gurny R, Doelker E. Drug-loaded nanoparticles-preparation methods and drug targeting issues. Review. Eur J Pharm Biopharm 1993; 39(5): 173-91.
Anisimova YV, Gelperina SI, Peloquin CA, Heifets LB. Nanoparticles as antituberculosis drugs carriers: effect on activity against Mycobacterium tuberculosis in human monocyte-derived macrophages. J Nanoparticle Res 2000; 2: 165-71. http://dx.doi.org/10.1023/A:1010061013365 DOI: https://doi.org/10.1023/A:1010061013365
Oganesyan EA, Budko AP, Maximenko OO, et al. Development and study of nanosomal drug formulation of rifampicin. Antibiotics and Chemotherapy 2005; 50: 15-9.(in Russian)
Shipulo YV, Lyubimov II, Maximenko OO, et al. Preparation and investigation of nanosomal forms of moksifloxacin on the basis of polybutyl cyanoacrylate. Pharm Chem J 2008; 42: 43-7.(in Russian) DOI: https://doi.org/10.1007/s11094-008-0073-2
Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005; 19: 311-22. http://dx.doi.org/10.1096/fj.04-2747rev DOI: https://doi.org/10.1096/fj.04-2747rev
Pandey R, Sharma S, Khuller GK. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis 2005; 85: 415-20. http://dx.doi.org/10.1016/j.tube.2005.08.009 DOI: https://doi.org/10.1016/j.tube.2005.08.009
Pandey R, Khuller GK. Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model. J Antimicrobial Chemotherapy 2006; 4: 1-7. DOI: https://doi.org/10.1093/jac/dkl128
Johnson CM, Pandey R, Sharma S, et al. Oral Therapy Using Nanoparticle-Encapsulated Antituberculosis Drugs in Guinea Pigs Infected with Mycobacterium tuberculosis. Antimicrobial agents and Chemotherapy 2005; 49. № 10: 4335-8. DOI: https://doi.org/10.1128/AAC.49.10.4335-4338.2005
Peracchia MT, Desmaele D, Couvreur P. Synthesis of a Novel poly(MePEG cyanoacrylate-co-alkylcyanoacrylate) amphiphilic copolymer for nanoparticle technology. Macromol 1997; 30: 846-51. http://dx.doi.org/10.1021/ma961453k DOI: https://doi.org/10.1021/ma961453k
Cook RO, Pannu RK, Kellaway IW. Novel sustained release microspheres for pulmonary drug delivery. J Control Rel 2005; 104: 79-89. http://dx.doi.org/10.1016/j.jconrel.2005.01.003 DOI: https://doi.org/10.1016/j.jconrel.2005.01.003
Lin X, Zhou R, Qiao Y, et al. Poly(ethylene glycol)/poly(ethyl cyanoacrylate) amphiphilic triblock copolymer nanoparticles as delivery vehicles for dexamethasone. J Polymer Sci: Part A: Polymer Chem 2008; 46: 7809-15. http://dx.doi.org/10.1002/pola.23083 DOI: https://doi.org/10.1002/pola.23083
Grangier JL, Pyugrenier M, Gautier JC, et al. Nanoparticles as carriers for growth hormone releasing factor. J Control Rel 1991; 15: 3-13. http://dx.doi.org/10.1016/0168-3659(91)90098-X
Weber C, Kreuter J, Langer K. Desolvation process and surface characteristics of HSA-nanoparticles. Int J Pharm 2000; 196: 197-200. http://dx.doi.org/10.1016/S0378-5173(99)00420-2 DOI: https://doi.org/10.1016/S0378-5173(99)00420-2
Langer K, Balthasar S, Vogel V, Dinauer N, Schubert von B.D. Optimization of the preparation process for human serum albumin(HSA) nanoparticles. Int J Pharm 2003; 257: 169-80. http://dx.doi.org/10.1016/S0378-5173(03)00134-0 DOI: https://doi.org/10.1016/S0378-5173(03)00134-0
Dreis S, Rothweiler F, Michaelis M, Cinatl Jr, Kreuter J, Langer K. Preparation, characterization and maintenance of drug efficacy of doxorubicin-loaded human serum albumin(HSA) nanoparticles. Int J Pharm 2007; 341: 207-14. http://dx.doi.org/10.1016/j.ijpharm.2007.03.036 DOI: https://doi.org/10.1016/j.ijpharm.2007.03.036
Giovagnoli S, Blasi P, Vescovi C, et al. Unilamellar vesicles as potential capreomycin sulfate carriers: Preparation and Physicochemical Characterization. AAPS Pharm Sci Tech 2003; 4. № 4: 1-12. DOI: https://doi.org/10.1208/pt040469
Kreuter J. Nanoparticles as drug delivery systems. In Nalwa HS, editor. Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers, Stevenson Ranch, USA 2004; Vol. 7: p. 161.
Wartlick H, Spänkuch-Schmitt B, Strebhardt K, Kreuter J, Langer K. Tumour cell delivery of antisense oligonulceotides by human serum albumin nanoparticles. J Control Rel 2004; 96: 483-95. http://dx.doi.org/10.1016/j.jconrel.2004.01.029 DOI: https://doi.org/10.1016/j.jconrel.2004.01.029
Wartlick H, Michaelis K, Balthasar S, Strebhardt K, Kreuter J, Langer K. Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumour cells. J Drug Target 2004; 12: 461-71. http://dx.doi.org/10.1080/10611860400010697 DOI: https://doi.org/10.1080/10611860400010697
Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 2009; 71: 251-6. http://dx.doi.org/10.1016/j.ejpb.2008.08.021 DOI: https://doi.org/10.1016/j.ejpb.2008.08.021
Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K. Covalent attachment of apolipoprotein AI and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Rel 2007; 118: 54-8. http://dx.doi.org/10.1016/j.jconrel.2006.12.012 DOI: https://doi.org/10.1016/j.jconrel.2006.12.012
Langer K, Anhorn MG, Steinhauser I, et al. Human serum albumin(HSA) nanoparticles: Reproducibility of preparation process and kinetics of enzymatic degradation. Pharm Nanotechnology 2007; 347: 109-117. DOI: https://doi.org/10.1016/j.ijpharm.2007.06.028
Bui KT, Alyautdin RN. Polylactide nanoparticles with antituberculosis drugs adsorbed on them. Exp Clin Pharmacology 2008; 3: 7-11. (in Russian)
Сhavany C, Le Doan T, Couvreur P, et al. Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides. Pharm Res 1992; 9(4): 441-9.
Vauthier С, Dubernet С, Chauvierre С, Brigger I, Couvreur P. Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Rel 2003; 93: 151-60. http://dx.doi.org/10.1016/j.jconrel.2003.08.005 DOI: https://doi.org/10.1016/j.jconrel.2003.08.005
Couvreur P, Dubernet C, Paisieux F. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm and Biopharm 1995; 41. № 1: 2-13.
Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target 2008; 16(2): 108-23. http://dx.doi.org/10.1080/10611860701794353 DOI: https://doi.org/10.1080/10611860701794353
Bootz A, Russ T, Gores F, Karas M, Kreuter J. Molecular weights of poly(butyl cyanoacrylate) nanoparticles determined by mass spectrometry and size exclusion chromatography. Eur J Pharm and Biopharm 2005; 60: 391-9. DOI: https://doi.org/10.1016/j.ejpb.2005.02.009
Kreuter J, Wilson CG, Fry JR, Paterson P, Ratcliffe JH. Toxicity and association of polycyanoacrylate nanoparticles with hepatocytes. J Microencapsul 1984; 1: 253-7. DOI: https://doi.org/10.3109/02652048409049364
Kante B, Couvreur P, Dubois-Krack G, et al. Toxicity of polyalkyl cyanoacrylate nanoparticles I: free nanoparticles. J Pharm Sci 1982; 71: 786-90. http://dx.doi.org/10.1002/jps.2600710716 DOI: https://doi.org/10.1002/jps.2600710716
Vansnick L, Couvreur P, Christiaens-Leyh D, Roland M. Molecular weights of free and drug-loaded nanoparticles. Pharm Res 1985; 6: 36-41. http://dx.doi.org/10.1023/A:1016366022712 DOI: https://doi.org/10.1023/A:1016366022712
Kumaresh SS, Tejrai AM, Anadrao KR, et al. Biodegradable polymeric nanoparticles as drug delivery devices. Review. J Control Rel 2001; 70: 1-20. http://dx.doi.org/10.1016/S0168-3659(00)00339-4 DOI: https://doi.org/10.1016/S0168-3659(00)00339-4
Nah JW, Jeong YI, Koh JJ. Drug release from nanoparticles of poly(D,L-lactide-co-glycolide). Korean J Chem Eng 2000; 17(2): 230-6. DOI: https://doi.org/10.1007/BF02707148
Couvreur P, Grislain L, Lenaerts V, Brasseur F, Guiot P, Biernacki A. Biodegradable polymeric nanoparticles as drug carriers for antitumor agents. In: Guiot P, Couvreur P, editors. Polymer Nanoparticles and Microspheres. Boca Raton, FL: CRC Press 1986; p. 24- 94.
Couvreur P, Couarraze G, Devissaguet J, Puisieux F, Nanoparticles: preparation and characterization. In: Benita S, editor. Microencapsulation: Methods and Industrial Applications. New York: Marcel Dekker 1996; p. 183- 211.
Allemann E, Gurny R, Doelker E. Drug-loaded nanoparticles-preparation methods and drug targeting issues. Eur J Pharm and Biopharm 1993; 39: 173-91.
Alyautdin RN, Petrov VE, Langer K, Berthold A, Kharkevich DA, Kreuter J. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 1997; 14: 325-8. http://dx.doi.org/10.1023/A:1012098005098 DOI: https://doi.org/10.1023/A:1012098005098
Krauel K, Pitaksuteepong T, Davies ND, Rades T. Entrapment of bioactive molecules in poly(alkylcyanoacrylate) nanoparticles. Amer J Drug Delivery 2004; 2: 251-8. http://dx.doi.org/10.2165/00137696-200402040-00005 DOI: https://doi.org/10.2165/00137696-200402040-00005
Huang C-Y, Lee Y-D. Core-shell type of nanoparticles composed of poly[(n-butyl cyanoacrylate)-co-(2-octyl cyanoacrylate)] copolymers for drug delivery application: Synthesis, characterization and in vitro degradation. Int J Pharm 2006; 325: 132-9. http://dx.doi.org/10.1016/j.ijpharm.2006.06.008 DOI: https://doi.org/10.1016/j.ijpharm.2006.06.008
Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary P, Couvreur P. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Delivery Reviews 2003; 55: 519-48. http://dx.doi.org/10.1016/S0169-409X(03)00041-3 DOI: https://doi.org/10.1016/S0169-409X(03)00041-3
Arias JL, Gallardo V, Ruiz MA, Delgado AV. Ftorafur loading and controlled release from poly(ethyl-2-cyanoacrylate) and poly(butylcyanoacrylate) nanospheres. Int J Pharm 2007; 337: 282-90. http://dx.doi.org/10.1016/j.ijpharm.2006.12.023 DOI: https://doi.org/10.1016/j.ijpharm.2006.12.023
Charles AP, Shaun EB, Gwen AH, et al. Once-daily and twice-daily dosing of p-aminosalicylic acid granules. Amer J Resp and Crit Care Medicine 1999; 159: 932-4. http://dx.doi.org/10.1164/ajrccm.159.3.9807131 DOI: https://doi.org/10.1164/ajrccm.159.3.9807131
Graf A, McDowell A, Rades Th. Poly(alkycyanoacrylate) nanoparticles for enhanced delivery of therapeutics-is there real potential? Expert Opin. Drug Deliv 2009; 6(4): 371-87. http://dx.doi.org/10.1517/17425240902870413 DOI: https://doi.org/10.1517/17425240902870413
Chavany C, Le Doan T, Couvreur P, Puisieux F, Helene C. Polyalkylcyanoacrylate nanoparticles as polymeric carriers for antisense oligonucleotides. Pharm Res 1992; 9: 441-9. http://dx.doi.org/10.1023/A:1015871809313 DOI: https://doi.org/10.1023/A:1015871809313
Guise V, Drouin JY, Benoit J, Mahuteau J, Dumont P, Couvreur P. Vidarabine-loaded nanoparticles: A physicochemical study. Pharm Res 1990; 7(7): 736-41. http://dx.doi.org/10.1023/A:1015819706491 DOI: https://doi.org/10.1023/A:1015819706491
Montaseri H, Sayyafan MS, Tajerzadeh H. Preparation and Characterization of Poly-(methyl ethyl cyanoacrylate) Particles Containing 5-Aminosalicylic acid. Iranian J Pharm Res 2005; 1: 21-27.
Reddy HL, Murthy RR. Influence of polymerization technique and experimental variables on the particle properties and release kinetics of methotrexate from poly(butylcyanoacrylate) nanoparticles. Acta Pharm 2004; 54: 103-8.
Liu H, Chen J. Indomethacin-loaded Poly(butylcyanoacrylate) Nanoparticles: Preparation and Characterization. PDA J Pharm Sci and Technology. 2009; 63: 207-16.
Douglas SG, Illum L, Davis SS, Kreuter J. Particle size and size distribution poly(2-butyl)cyanoacrylate nanoparticles. 1. Influence of physicochemical factors. J Colloid and Interface Sci 1984; 101(1): 149-58. http://dx.doi.org/10.1016/0021-9797(84)90015-8 DOI: https://doi.org/10.1016/0021-9797(84)90015-8
Paramonov DV, Antonova YA, Zharova IG, et al. About radiation induced stability of drug forms of ampicillin based on polyalkyl cyanoacrylate nanoparticles. Pharm Chem J 1996; 10: 42-5.(in Russian) DOI: https://doi.org/10.1007/BF02333894
Zara GP, Cavalli R, Fundarò A, Bargoni A, Caputo O, Gasco MR. Pharmacokinetics of doxorubicin incorporated in solid lipid nanospheres(SLN). Pharmacol Res 1999; 40(3): 281-6. http://dx.doi.org/10.1006/phrs.1999.0509 DOI: https://doi.org/10.1006/phrs.1999.0509
Couvreur P, Vauthier Ch. Nanotechnology: Intelligent Design to treat Complex Disease. Pharm Res 2006; 23(7): 1417-50. http://dx.doi.org/10.1007/s11095-006-0284-8 DOI: https://doi.org/10.1007/s11095-006-0284-8
Löbenberg R, Araujo L, Von Briesen H, Rodgers E, Kreuter J. Body distribution of azidothymidine bound to hexyl-cyanoacrylate nanoparticles after i.v. injection to rats. J Control Rel 1998; 50(1-3): 21-30. http://dx.doi.org/10.1016/S0168-3659(97)00105-3 DOI: https://doi.org/10.1016/S0168-3659(97)00105-3
Leu D, Manthey B, Kreuter J. Distribution and elimination of coated polymethyl [2-14C]methacrylate nanoparticles after intravenous injection in rats. J Pharm Sci 1984; 73(10): 1433-7. http://dx.doi.org/10.1002/jps.2600731028 DOI: https://doi.org/10.1002/jps.2600731028
Legaroz C, Gamazo C, Renedo MJ, Blanco-Prieto MG. Biodegradable micro- and nanoparticles as long-term delivery vechicles for gentamicin. J Microencapsul 2006; 23(7): 782-92. http://dx.doi.org/10.1080/02652040600946886 DOI: https://doi.org/10.1080/02652040600946886
Сouvreur P, Kante M, Grislain L, et al. Toxicity of polyalkylcyanoacrylate nanoparticles. II. Doxorubicin-loaded nanoparticles. J Pharm Sci 1982; 71: 790-2. http://dx.doi.org/10.1002/jps.2600710717 DOI: https://doi.org/10.1002/jps.2600710717
Vauthier Ch, Labarre D, Ponchel G. Design aspects of poly(alkyl cyanoacrylate) nanoparticles for drug delivery. J Drug Target 2007; 15(10): 641-63. http://dx.doi.org/10.1080/10611860701603372 DOI: https://doi.org/10.1080/10611860701603372
Muller RH, Lherm C, Herbort J, Couvreur P. In vitro model for the degradation of alkylcyanoacrylate nanoparticles. Biomaterials 1990; 11: 590-5. http://dx.doi.org/10.1016/0142-9612(90)90084-4 DOI: https://doi.org/10.1016/0142-9612(90)90084-4
Сouvreur P, Kante M, Roland P, et al. Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J Pharm Pharmocol 1979; 31: 331-2. http://dx.doi.org/10.1111/j.2042-7158.1979.tb13510.x DOI: https://doi.org/10.1111/j.2042-7158.1979.tb13510.x
Caruso F. Hollow Capsule Processing through Colloidal Templating and Self-Assembly. Chem Eur J 2000; 6(3): 413-9. http://dx.doi.org/10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9 DOI: https://doi.org/10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9
Fujimoto K, Toyoda T, Fukui Y. Preparation of bionanocapsules by the layer-by-layer deposition of polypeptides onto a liposome. Macromol 2007; 40: 5122-8. http://dx.doi.org/10.1021/ma070477w DOI: https://doi.org/10.1021/ma070477w
Kepczynski M, Lewandowska J, Romek M, Zapotoczny S, Ganachaud F, Nowakowska M. Silicone nanocapsules templated inside the membranes of catanionic vesicles. Langmuir 2007; 23: 7314-20. http://dx.doi.org/10.1021/la063442i DOI: https://doi.org/10.1021/la063442i
Kepczynski M, Ganachaud F, Hemery P. Silicone nanocapsules from catanionic vesicle templates; Adv Mater 2004; 16(20): 1861-3. http://dx.doi.org/10.1002/adma.200400537 DOI: https://doi.org/10.1002/adma.200400537
Fukui Y, Fujimoto K. The preparation of sugar polymer-coated by the layer-by-layer deposition on the liposome. Langmuir, XXXX Amer Chem Society 2009; XXX(XX): 234. DOI: https://doi.org/10.1021/la9008834
Arias JL, Gallardo V, Gomez-Lopera SA, Plaza RC, Delgado AV. Synthesis and characterization of poly(ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J Control Rel 2001; 77: 309-21. http://dx.doi.org/10.1016/S0168-3659(01)00519-3 DOI: https://doi.org/10.1016/S0168-3659(01)00519-3
Musyanovich A, Landfester K. Synthesis of polybutylcyanoacrylate nanocapsules by interfacial polymerization in miniemulsions for the delivery of DNA molecules. Prog Colloid Polym Sci 2008; 134: 120-7. DOI: https://doi.org/10.1007/2882_2008_089
Gasco MR, Trotta M. Nanoparticles from microemulsions. Int J Pharm 1986; 2: 251-8. DOI: https://doi.org/10.1016/0378-5173(86)90125-0
Watnasirichaikul S, Davies NM, Rades T, Tucker IG. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm Res 2000; 17(6): 684-9. DOI: https://doi.org/10.1023/A:1007574030674
Miyzaki Sh, Takahashi A, Kubo W. Poly-n-butylcyanoacrylate(PNBCA) nanocapsules as a carrier for NSAIDs: in vitro release and in vivo skin penetration. J Pharm Pharmacol 2003; 4: 34-9.
Fresta M, Cavallaro G, Giammona G, Wehrlis E, Puglisi G. Preparation and characterization of polyethyl-2-cyanoacrylate nanocapsules containing antiepileptic drugs. Biomaterials 1996; 17: 751-8. http://dx.doi.org/10.1016/0142-9612(96)81411-6 DOI: https://doi.org/10.1016/0142-9612(96)81411-6
Li G, Guo J, Wang X, Wei J. Microencapsulation of a functional dye and its UV-crosslinking controlled releasing behavior. J Polym Sci Part A Polym. Chem 2009; 47: 3630-9. DOI: https://doi.org/10.1002/pola.23434
Crespy D, Stark M, Hoffmann-Richter C, Ziener U, Landfester K. Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets. Macromol 2007; 40: 3122-35. http://dx.doi.org/10.1021/ma0621932 DOI: https://doi.org/10.1021/ma0621932
Pitaksuteepong T, Davies NM, Tucker IG, et al. Factors influencing the entrapment of hydrophilic compounds in nanocapsules prepared by interfacial polymerization of water-in-oil microemulsions. Eur J Pharm Biopharm 2002; 53: 335-42. http://dx.doi.org/10.1016/S0939-6411(01)00245-4 DOI: https://doi.org/10.1016/S0939-6411(01)00245-4
Van Zul A JP, Bosch RFP, McLeary JB, Sanderson RD, Klumperman B. Synthesis of styrene based liquid-filled polymeric nanocapsules by the use of RAFT-mediated polymerization in miniemulsion. Polymer 2005; 46: 3607-15. http://dx.doi.org/10.1016/j.polymer.2005.03.025 DOI: https://doi.org/10.1016/j.polymer.2005.03.025
Al Khouri FN, Roblot-Treupel L, Fessi H, Devissaguet GP, Puisieux F. Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules. Int J Pharm 1986; 28: 125-32. http://dx.doi.org/10.1016/0378-5173(86)90236-X DOI: https://doi.org/10.1016/0378-5173(86)90236-X
El-Nokali MA, Piatt DM, Charpentier BA. Polymeric Delivery Systems. Properties and Application. ASC. Washington; 1999.
Vauthier Ch., Couvreur P. Biodegradation of poly(alkylcyanoacrylates). BPOL 2000; 1: 1-35.
Plate NA, Vasiliev AE. Physiologically active polymers. Macromol Compounds 1982; 24(4): 675-95.(in Russian) DOI: https://doi.org/10.1016/0032-3950(82)90330-6
Kopecek I. Polymers with controlled biodegradability as carriers of biologically active substances. J All-Soviet Union Chem Society named after D.I. Mendeleyev 1985; 30(4): 372-7. (in Russian)
Tsapis N, Bennett D, O’Driscoll K, et al. Direct lung delivery of para-aminosalicylic acid by aerosol particles. Tuberculosis 2003; 83: 379-85. http://dx.doi.org/10.1016/j.tube.2003.08.016 DOI: https://doi.org/10.1016/j.tube.2003.08.016
Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis 2005; 85(4): 227-34. http://dx.doi.org/10.1016/j.tube.2004.11.003 DOI: https://doi.org/10.1016/j.tube.2004.11.003
Grangier JL, Pyugrenier M, Gautier JC, et al. Nanoparticles as carriers for growth hormone releasing factor. J Control Rel 1991; 15: 3-13. http://dx.doi.org/10.1016/0168-3659(91)90098-X DOI: https://doi.org/10.1016/0168-3659(91)90098-X
Lambert G, Fattal E, Pinto-Alphandary H, Gulik A, Couvreur P. Polyisobutyl cyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharm Res 2000; 17(6): 707-14. http://dx.doi.org/10.1023/A:1007582332491 DOI: https://doi.org/10.1023/A:1007582332491
Hillaireau H, Doan TLe, Chacun H, Janin J, Couvreur P. Encapsulation of mono- and oligo-nucleotides into aqueous-core nanocapsules in the presence of various water-soluble polymers. Int J Pharm 2007; 331: 148-52. http://dx.doi.org/10.1016/j.ijpharm.2006.10.031 DOI: https://doi.org/10.1016/j.ijpharm.2006.10.031
Liang M, Davies NM, Toth I. Increasing entrapment of peptides within poly(alkyl cyanoacrylate) nanoparticles prepared from water-in-oil microemulsions by copolymerization. Int J Pharm 2006; 362: 141-6. http://dx.doi.org/10.1016/j.ijpharm.2008.06.005 DOI: https://doi.org/10.1016/j.ijpharm.2008.06.005
Clemens KW, Ulrich Z, Landfester K. A Route to Nonfunctionalized and Functionalized Poly(n-butylcyanoacrylate) Nanoparticles: Preparation in Miniemulsion. Macromol 2007; 40: 928-38. http://dx.doi.org/10.1021/ma061865l DOI: https://doi.org/10.1021/ma061865l
Mendez CM, McClain CJ, Marsano LS, Albumin therapy in clinical practice. Nutr Clin Prac 2005; 20: 314-20. http://dx.doi.org/10.1177/0115426505020003314 DOI: https://doi.org/10.1177/0115426505020003314
Kratz F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J Control Rel 2008; 132: 171-83. http://dx.doi.org/10.1016/j.jconrel.2008.05.010 DOI: https://doi.org/10.1016/j.jconrel.2008.05.010
Derakhshandeh K, Erfan M, Dadashzadeh S. Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable nanoparticles: factorial design, characterization and release kinetics. Eur J Pharm Biopharm 2007; 66(1): 34-41. http://dx.doi.org/10.1016/j.ejpb.2006.09.004 DOI: https://doi.org/10.1016/j.ejpb.2006.09.004
Fonseca C, Simoes S, Gaspar R, Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Rel 2002; 83(2): 273-86. http://dx.doi.org/10.1016/S0168-3659(02)00212-2
Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Rel 2002; 79(1-3): 123-35. http://dx.doi.org/10.1016/S0168-3659(01)00530-2 DOI: https://doi.org/10.1016/S0168-3659(01)00530-2
Pinto MM, Sousa EP, Natural and synthetic xanthonolignoids: chemistry and biological activities. Curr Med Chem 2003; 10(1): 1-12. http://dx.doi.org/10.2174/0929867033368574 DOI: https://doi.org/10.2174/0929867033368574
Nicoli S, Santi P, Couvreur P, Couarraze G, Colombo P, Fattal E. Design of triptorelin loaded nanospheres for
transdermal iontophoretic administration. Int J Pharm 2001; 214(1-2): 31-5. http://dx.doi.org/10.1016/S0378-5173(00)00632-3 DOI: https://doi.org/10.1016/S0378-5173(00)00632-3
Gao H, Wang YN, Fan YG, et al. Synthesis of a biode-gradable tadpole-shaped polymer via the coupling reaction of polylactide onto mono(6-(2-aminoethyl)amino-6-deoxy)-beta-cyclodextrin and its properties as the new carrier of protein delivery system. J Control Rel 2005; 107(1): 158-73. http://dx.doi.org/10.1016/j.jconrel.2005.06.010 DOI: https://doi.org/10.1016/j.jconrel.2005.06.010
Burgess DJ, Davis SS, Tomlinson E. Potential use of albumin microspheres as a drug delivery system. I. Preparation and in vitro release of steroids. Int J Pharm 1987; 39: 129-36. http://dx.doi.org/10.1016/0378-5173(87)90207-9 DOI: https://doi.org/10.1016/0378-5173(87)90207-9
Wunder A, Muller-Ladner U, Stelzer EH, et al. Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J Immunol 2003; 170: 4793-801. http://dx.doi.org/10.4049/jimmunol.170.9.4793 DOI: https://doi.org/10.4049/jimmunol.170.9.4793
Marty JJ, Oppenheim RC. Colloidal systems for drug delivery. Aust J Pharm Sci 1977; 6: 65-76.
Marty JJ, Oppenheim RC, Speiser P. Nanoparticles-a new colloidal drug delivery system. Pharm Acta Helv 1978; 53: 17-23.
Kufleitner J, Wagner S, Worek F, von Briesen H, Kreuter J. Adsorption of obidoxime onto human serum albumin nanoparticles: Drug loading, particle size and drug release. J Microencapsul 2010; 27(6): 506-13. http://dx.doi.org/10.3109/02652041003681406 DOI: https://doi.org/10.3109/02652041003681406
Kufleitner J, Worek F, Kreuter J. Incorporation of obidoxime into human serum albumin nanoparticles: optimization of preparation parameters for the development of a stable formulation. J Microencapsul 2010; 27(7): 594-601. http://dx.doi.org/10.3109/02652048.2010.501395 DOI: https://doi.org/10.3109/02652048.2010.501395
Sebak S, Mirzael M, Malhotra M, Kulamarva A, Prakash S. Human serum albumin nanoparticles as an efficient noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis. Int J Nanomedicine 2010; 5: 525-532. DOI: https://doi.org/10.2147/IJN.S10443
Taheri A, Fatemeh A, Faranak S, et al. Nanoparticles of conjugated Methotrexate-Human Serum albumin: Preparation and cytotoxicity evaluations. J Nanomaterials 2011; 10: 1-7. http://dx.doi.org/10.1155/2011/768201 DOI: https://doi.org/10.1155/2011/768201
El-Samaligy M, Rohdewald P. Triamcinolone diacetate nanoparticles, a sustained release drug delivery system suitable for parenteral administration. Pharm Acta Helv 1982; 57: P. 201.
Kreuter J, Ramge P, Petrov V, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanopar-ticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 2003; 20: 409-16. http://dx.doi.org/10.1023/A:1022604120952 DOI: https://doi.org/10.1023/A:1022604120952
Ali SI, Heuts JPA, Hawkett BS, van Herk AM. Polymer Encapsulated Gibbsite Nanoparticles: Efficient Preparation of Anisotropic Composite Latex Particles by RAFT-based Starved Feed Emulsion Polymerization. Langmuir 2009; 25(18): 10523-33. http://dx.doi.org/10.1021/la9012697 DOI: https://doi.org/10.1021/la9012697
Ali SI, Heuts JPA, van Herk AM. Controlled Synthesis of Polymeric Nanocapsules by RAFT-based Vesicle Templating. Langmuir 2010; 26(11): 7848-58. http://dx.doi.org/10.1021/la904709c DOI: https://doi.org/10.1021/la904709c
Ali SI, Heuts JPA, van Herk AM. Vesicle-templated pH-responsive polymeric Nanocapsules. Soft Matter 2011; 7: 5382-90. http://dx.doi.org/10.1039/c1sm05266g DOI: https://doi.org/10.1039/c1sm05266g
Shirinskiy VG. Poly-n-butyl cyanoacrylate nanoparticles as carriers of gentamycin to intracellular medium. Medicine and Ecology 1997; № 2: 107-10. (in Russian)
Zhaparova LZh, Tazhbayev YM, Burkeev MZh, Kreuter J, Zhymagalieva TS. Synthesis of polymeric nanoparticles on the basis of butyl cyanoacrylate for transport of antitumor drug preparation “Arglabin”. Herald of Karaganda University, Serial Chem 2011; 1(61): 37-41. (in Russian)
Zhaparova LZh, Tazhbayev YM, Burkeev MZh, et al. Synthesis and Characterization of Polyethylcyanoacrylate nanoparticles loaded with capreomycin sulfate. Pharm Chem J 2012; 46(1): 6-9. http://dx.doi.org/10.1007/s11094-012-0724-1 DOI: https://doi.org/10.1007/s11094-012-0724-1
Chouinard FI, Kan FWK, Leroux JChI, Foucher Ch, Lenaerts V. Preparation and purification of polyisohexylcyanoacrylate nanocapsules. Int J Pharm 1991; 72: 211-7. http://dx.doi.org/10.1016/0378-5173(91)90110-A DOI: https://doi.org/10.1016/0378-5173(91)90110-A
Chouinard FI, Buczkowski S, Lenaerts V. Poly(alkylcy-anoacrylate) nanocapsules: physicochemical characteri-zation and mechanism of formation. Pharm Res 1994; 11(6): 869-74. http://dx.doi.org/10.1023/A:1018938026615 DOI: https://doi.org/10.1023/A:1018938026615
Ryan B, McCann G. Novel sub-ceiling temperature rapid depolymerization-repolymerization reactions of cyanoacrylate polymers. Macromol Rapid Commun 1996; 17: 217-227. http://dx.doi.org/10.1002/marc.1996.030170404 DOI: https://doi.org/10.1002/marc.1996.030170404
Zhaparova L, Tazhbayev Y, Burkeev M, Adekenov S, Ulbrich K, Kreuter J. Preparation and investigation of antitumor drug Arglabin loaded human serum albumin nanoparticles. Trends in Cancer Res 2008; 4: 43-7.
Burkeev M, Tazhbayev Y, Zhaparova L, Kreuter J. Polymeric nanosystems for the delivery of antitumor and antituberculosis drugs. Herald of Kazakh National University 2013; 2(70): 58-64. (in Kazakh) DOI: https://doi.org/10.15328/chemb_2013_258-64
Fonseca С, Simoes S, Gaspar R, Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Rel 2002; 83(2): 273-86. DOI: https://doi.org/10.1016/S0168-3659(02)00212-2
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Del Reviews 2003; 55: 329-47. http://dx.doi.org/10.1016/S0169-409X(02)00228-4 DOI: https://doi.org/10.1016/S0169-409X(02)00228-4
Panarin YF. Polymers in Medicine and Pharmacy: handbook. Saint-Petersburg: Edition of polytechnic University, 2008. (in Russian)
Zhubanov BA, Batyrbekov EO, Iskakov RM. Polymeric materials with healing properties. Almaty: Complex, 2000. (in Russian)
Fenske DB, Chonn A, Cullis PR. Liposomal nanomedicines: an emerging field. Toxicol. Pathol 2008; 36(1): 21-9. DOI: https://doi.org/10.1177/0192623307310960
Shaitan K, Tourleigh Y, Golik D, Kirpichnikov M. Computer-aided molecular design of nanocontainers for inclusion and targeted delivery of bioactive compounds. J Drug Del Sci Tech 2006; 16: 253-8. DOI: https://doi.org/10.1016/S1773-2247(06)50047-4
Charles EL, Buffalo NY, inventors; Preparation Method of Poly-(D,L-lactide-co-glycolide) Nanoparticles with drugs. United States patent US 3297033. 1954 April.
Li H, Tran W, Hu Y, et al. A PEDF N-terminal peptide protects the retina from ischemic injury when delivered in PLGA nanospheres. Exp Eye Res 2006; 83(4): 824-33. DOI: https://doi.org/10.1016/j.exer.2006.04.014
Prasad Rao J, Geckeler Kurt E. Polymer Nanoparticles: Preparation techniques and size control parameters. Progr Polymer Sci 2011; 36: 887-913. http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001 DOI: https://doi.org/10.1016/j.progpolymsci.2011.01.001
Helle A, Hirsjarvi S, Peltonen L, et al. Quantitative determination of drug encapsulation in poly(lactic acid) nanoparticles by capillary electrophoresis. J Chromatography. A 2008; 1178: 248-55. http://dx.doi.org/10.1016/j.chroma.2007.11.041 DOI: https://doi.org/10.1016/j.chroma.2007.11.041
Fessi H, Puisieux F, Devissaguet JP, et al. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 1989; 55: 1-4. http://dx.doi.org/10.1016/0378-5173(89)90281-0 DOI: https://doi.org/10.1016/0378-5173(89)90281-0
Seyler I, Appel M, Devissaguet JP, Legrand P, Barratt G. Macrophage activation by a lipophilic derivative of muramyldipeptide within nanocapsules: investigation of the mechanism of drug delivery. J Nanopart Res 1999; 1: 91-7. http://dx.doi.org/10.1023/A:1010016128378 DOI: https://doi.org/10.1023/A:1010016128378
Legrand P, Lesieur S, Bochot A, et al. Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int J Pharm 2007; 344: 33-43. http://dx.doi.org/10.1016/j.ijpharm.2007.05.054 DOI: https://doi.org/10.1016/j.ijpharm.2007.05.054
Chang J, Jallouli Y, Kroubi M, et al. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm 2009; 379: 285-92. http://dx.doi.org/10.1016/j.ijpharm.2009.04.035 DOI: https://doi.org/10.1016/j.ijpharm.2009.04.035
Nehilla BJ, Bergkvist M, Popat KC, Desai TA. Purified and surfactant-free coenzyme Q10-loaded biodegradable nanoparticles. Int J Pharm 2008; 348: 107-14. http://dx.doi.org/10.1016/j.ijpharm.2007.07.001 DOI: https://doi.org/10.1016/j.ijpharm.2007.07.001
Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 2010; 351: 19-29. http://dx.doi.org/10.1016/j.jcis.2010.05.022 DOI: https://doi.org/10.1016/j.jcis.2010.05.022
Burkeev MZh, Tazhbayev YM, Zhaparova LZh, Zhappar NK. Poly-D,L-lactic acid as a polymeric carrier of antituberculosis drug preparation “Isoniazid”. In: Мateriály IX Mezinárodní védecko-praktiká conference “Moderní Vymoženosti védy-2013”. Praha, Publishing house “Education and Science; 2013: p.61-6. (in Russian)
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 M. Zh. Burkeev, J. Kreuter, A. Van Herk, Y. M. Tazhbayev, L. Zh. Zhaparova, T. S. Zhumagalieva, N. K. Zhappar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .