Sol-Gel Process for Anti-Corrosion Coatings
DOI:
https://doi.org/10.6000/1929-5995.2013.02.04.4Keywords:
Corrosion, Sol gel, chrome free, colloid, surface chemistryAbstract
This review paper summarizes the current state of the art of sol-gel technology for formulating anti corrosive protective coating. A brief description of the mechanism of sol-gel reactions, various parameters that influence the property of the final product and the course of the sol-gel reaction has been given. Different types of metal precursors that are extensively used in sol preparation and the advantages and disadvantages have also been mentioned in brief. Surface chemistry of sol-gel matrix and various stabilizing and destabilizing forces that are active on the surface of colloidal particles have also been discussed. Problems related to obtaining good quality product with uniformly distributed concentrations have been outlined. Possible pathways for further improvement of anti-corrosive properties of the coating have been described, such as incorporation of various types of additives into the sol matrix prior to coating. As a whole the present study summarizes the superiority and benefits of organic-inorganic hybrid coatings using sol-gel technique and having good protective and anti-corrosive properties.
References
Jones DA. Principles and Preservation of Corrosion, 2nd ed., Prentice-Hall, New Jersey 1996.
Shreie LL, Jarman RA, Burstein GT. Corrosion, 3rd ed., Butterworth-Heinemann, Oxford 1994.
Metroke TL, Parkhil R, Knobbe ET. Proceedings of the Material Society Symposium 1999; 576: 203. DOI: https://doi.org/10.1557/PROC-576-293
Kharmov AN, Balbyshev VN, Voevodin NN, Donley MS. Nanostructured Sol–Gel derived conversion coatings based on epoxy- and amino-silanes. Prog Org Coat 2003; 47: 207-13. http://dx.doi.org/10.1016/S0300-9440(03)00140-1 DOI: https://doi.org/10.1016/S0300-9440(03)00140-1
Metroke TL, Kachurina O, Knobbe ET. Passivation of metal alloys using sol–gel-derived materials-a review. Prog Org Coat 2001; 41: 233-38. http://dx.doi.org/10.1016/S0300-9440(01)00134-5 DOI: https://doi.org/10.1016/S0300-9440(01)00134-5
Livage J, Henry M, Sanchez C. Sol Gel chemistry of trasition metal oxide. Prog Solid St Chem 1988; 18: 259-42. http://dx.doi.org/10.1016/0079-6786(88)90005-2 DOI: https://doi.org/10.1016/0079-6786(88)90005-2
Parkhil R, Knobbe ET, Donley MS. Application and evaluation of environmentally compliant spray coated ormosil films as corrosion resistant treatment for aluminum 2024-T3. Prog Org Coat 2001; 41: 261-65. http://dx.doi.org/10.1016/S0300-9440(01)00138-2 DOI: https://doi.org/10.1016/S0300-9440(01)00138-2
Kasemann R, Schmidt H. Coating for mechanical and chemical protection based on organic-inorganic sol-gel nanocomposites, France, 8-10 November 1993; 171.
Palanivel V. Modified silane thin films as an alternative to chromates for corrosion protection of AA2024-T3 alloy. University of Cincinnati, MS.c Thesis 2003; 75-88.
Ciriminna R, Carà P, Sciortino M, Pagliaro M. Catalysis with doped Sol-Gel silicates. Adv Synth Catal 2001; 353: 677-87. http://dx.doi.org/10.1002/adsc.201000731 DOI: https://doi.org/10.1002/adsc.201000731
Wittmar A, Caparrotti H, Veith V. Surf Interface Anal 2011. http://dx.doi.org/10.1002/sia.3771 DOI: https://doi.org/10.1002/sia.3771
Tavandashti, Sanjabi N, Shahrabi ST. Evolution of corrosion protection performance of hybrid silica based sol– gel nanocoatings by doping inorganic inhibitor. Mater Corrosion 2011; 62: 411-15. http://dx.doi.org/10.1002/maco.200905529 DOI: https://doi.org/10.1002/maco.200905529
Introduction to colloid and sol-gel chemistry, Chapter 1. Available from http://www.shodhganga.inflibnet.ac.in
Shaw DJ. Introduction to colloid and surface chemistry, Butterworth, 4th ed.,1992. DOI: https://doi.org/10.1016/0301-679X(93)90102-7
Flory JP. “Principles of polymer chemistry” Disc. Faraday Soc 1974; 57: 7. http://dx.doi.org/10.1039/dc9745700007 DOI: https://doi.org/10.1039/dc9745700007
Hamdy A, Butt D. Environmentally compliant silica conversion coatings prepared by Sol-Gel method for aluminum alloys. Surf Coat Technol 2006; 201: 401-407. http://dx.doi.org/10.1016/j.surfcoat.2005.11.142 DOI: https://doi.org/10.1016/j.surfcoat.2005.11.142
Metroke T, Apblett A. Effect of solvent dilution on corrosion protective properties of Ormosil coatings on 2024-T3 aluminum alloy. Prog Org Coat 2004; 51: 36-46. http://dx.doi.org/10.1016/j.porgcoat.2004.06.002 DOI: https://doi.org/10.1016/j.porgcoat.2004.06.002
Roussia E, Tsetsekou A. Novel hybrid organo-silicate corrosion resistant coatings based on hyperbranched polymers. Surf Coat Technol 2011; 205: 3235-44. http://dx.doi.org/10.1016/j.surfcoat.2010.11.037 DOI: https://doi.org/10.1016/j.surfcoat.2010.11.037
Liu D, Troczynski T. Water-based Sol-Gel synthesis of hydroxyapatite: Process Development. Biomaterials 2001; 22: 1721-30. http://dx.doi.org/10.1016/S0142-9612(00)00332-X DOI: https://doi.org/10.1016/S0142-9612(00)00332-X
Hench L, Ulrich R. John Wiley & Sons Inc 1984; ISBN 0471896691, pp. 320-355.
Brinker C. Materials Research Society 1986; ISBN 0931837391, pp. 55-69.
Hubert-Pfalzgraf LG. Coordination. Chemistry. Review. 178-180, 967-997 (198). DOI: https://doi.org/10.1016/S0010-8545(98)00080-0
Corriu RJP, Leclercq D, Lefevre P, Mutin PH, Vioux A. Preparation of monolithic metal oxide gels by silicon halides by non-hydrolytic sol-gel rocess. J Non Cryst Solids 1992; 146: 301-303. http://dx.doi.org/10.1016/S0022-3093(05)80505-8 DOI: https://doi.org/10.1016/S0022-3093(05)80505-8
Kozhukharov S. Journal of the University of Chemical Technology and Metallurgy 2009; 44(2): 143-50.
Izumi K, Tanaka H, Uchida Y, Tonge N, Minami T. J Mat Sci Lett 1993; 12: 723-27. http://dx.doi.org/10.1007/BF00626699 DOI: https://doi.org/10.1007/BF00626699
http//www.uio.no
Del Coro Serrano M, Kozhukharov S. Applicationof sol-gel techniques for obtaining of new multi- functional materials, Development - Future Perspectives and Innovations in the science, Proc., Sofia 2006; 84-93.
Dislish H. Sol-Gel 1984 → 2004 (?). J Non-Cryst Sol 1985; 73: 599-12. DOI: https://doi.org/10.1016/0022-3093(85)90379-5
Besra L, Liu M. A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 2007; 52: 1-61. http://dx.doi.org/10.1016/j.pmatsci.2006.07.001 DOI: https://doi.org/10.1016/j.pmatsci.2006.07.001
Shi J. CISM; Steric stabilization, Literature Review, Ohio State University, 06502, 2002. Available from http://www.matsceng.ohio-state.edu/ims/LR_Stericstablization.pdf
Brinker CJ, Scherer GW. Sol-gel science: The physic and chemistry of sol-gel processing, Academy Press, San Diego, USA 1990.
Napper DH. Polymeric Stabilization of Colloidal Dispersions, Academic Press, New York, USA 1983.
Sarkar P, Nicholson PS. Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Applications to Ceramics. J Am Ceram Soc 1996; 79(8): 1987-2002. http://dx.doi.org/10.1111/j.1151-2916.1996.tb08929.x DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08929.x
Weng W, Chen H, Tsai S, Wu J. Thermal property of epoxy/SiO2 hybrid material synthesized by the sol–gel process. J Appl Polym Sci 2004; 91: 532-37. http://dx.doi.org/10.1002/app.13217 DOI: https://doi.org/10.1002/app.13217
Galliano P, Damborenea JJD, Pascual MJ, Duran A. Sol-Gel Coatings on 316L Steel for clinical application. J Sol–Gel Sci Technol 1998; 13: 723-27. http://dx.doi.org/10.1023/A:1008653208083 DOI: https://doi.org/10.1023/A:1008653208083
Vasconcelos DCL, Carvalho JAN, Mantel M, Vasconcelos WL. Corrosion resistance of stainless steel with sol-gel silica. J Non-Cryst 2000; 273: 135-39. http://dx.doi.org/10.1016/S0022-3093(00)00155-1 DOI: https://doi.org/10.1016/S0022-3093(00)00155-1
Li D, Huang F. Sol-gel preparation and characterization of nonporous ZnO/SiO2 with broadband anti reflective properties. Appl Surf Sci 2011; 257: 9752-56. http://dx.doi.org/10.1016/j.apsusc.2011.05.126 DOI: https://doi.org/10.1016/j.apsusc.2011.05.126
Belleville P. Functional coatings: The sol-gel approach. Comptes Rendus Chimie 2010; 13: 97-105. http://dx.doi.org/10.1016/j.crci.2009.12.005 DOI: https://doi.org/10.1016/j.crci.2009.12.005
Yasuda Y, Nishikawa K, Furukawa S. Structural colors from TiO2/SiO2 multilayer flakes prepared by sol-gel process. Dyes Pigm 2011; 92: 122-1125. DOI: https://doi.org/10.1016/j.dyepig.2011.08.006
Antonio Ugas Carrión R. Investigation of stabilizing agents in thin sol-gel zirconium oxide anti-corrosion coatings on iron materials, Vom Fachbereich Chemie der Technischen Universität Darmstadt, PhD Thesis.
Zanda RZ, Verbekenb K, Adriaensa A. Corrosion resistance performance of cerium doped silica sol-gel coatings on 304L stainless steel. Prog Org Coat 2012; 75: 463-73. http://dx.doi.org/10.1016/j.porgcoat.2012.06.008 DOI: https://doi.org/10.1016/j.porgcoat.2012.06.008
Masalski J, Gluszek J, Zabrzeski J, Nitsch K, Gluszek P. Improvement in corrosion resistance of the 316l stainless steel by means of Al2O3 coatings deposited by the sol-gel method Thin Solid Films 1999; 349: 186-90. http://dx.doi.org/10.1016/S0040-6090(99)00230-8 DOI: https://doi.org/10.1016/S0040-6090(99)00230-8
Atik M, Neto P, Avaka LA, Aegreter MA. Sol-gel thin films for corrosion protection” Ceram Int 1995; 21: 403-406. http://dx.doi.org/10.1016/0272-8842(95)94466-N DOI: https://doi.org/10.1016/0272-8842(95)94466-N
Li H, Liang K, Mei L, Gu S, Wang S. Corrosion protection of mild steel by zirconia sol-gel coating. J Mater Sci Lett 2001; 20: 1081-83. http://dx.doi.org/10.1023/A:1010918224936 DOI: https://doi.org/10.1023/A:1010918224936
Fedrizzi L, Rodriguez FJ, Rossi S, Deflorian F, Maggio RD. The use of electrochemical techniques to study the corrosion behaviour of organic coatings on steel pretreated with sol–gel zirconia films. Electrchim Acta 2001; 46: 3715-24. http://dx.doi.org/10.1016/S0013-4686(01)00653-3 DOI: https://doi.org/10.1016/S0013-4686(01)00653-3
Perdomo F, Lima PD, Aegreter MA, Avaka L. Sol-Gel deposition of ZrO2 films in air and in oxygen-free atmospheres for chemical protection of 304 Stainless Steel: A comparative corrosion Study. J Sol-Gel Sci Technol 1999; 15: 87-91. http://dx.doi.org/10.1023/A:1008769231899 DOI: https://doi.org/10.1023/A:1008769231899
Parralejoa A, Orti A. Effect of type of solvent alcohol and its molar proportion on the drying critical thickness of ZrO 2–3 mol% Y2O3 films prepared by the sol–gel method. Surf Coat Technol 2011; 205: 3540-45. http://dx.doi.org/10.1016/j.surfcoat.2010.12.037 DOI: https://doi.org/10.1016/j.surfcoat.2010.12.037
Behzadnasaba M, Mirabedin SM, Kabiri K, Jamali S. Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Corr Sci 2011; 53: 89-98. http://dx.doi.org/10.1016/j.corsci.2010.09.026 DOI: https://doi.org/10.1016/j.corsci.2010.09.026
Guin AK, Nayak S, Rout TK, Bandyopadhyay N, Sengupta DK. Corrosion resistant nano hybrid sol-gel coating on steel sheet. ISIJ Int 2011; 51: 435-40. http://dx.doi.org/10.2355/isijinternational.51.435 DOI: https://doi.org/10.2355/isijinternational.51.435
Guin AK, Nayak S, Rout TK, Bandyopadhyay N, Sengupta DK. Corrosion behavior of nanohybridtitania/silica composite coating on phosphated steel sheet. J Coat Technol Res 2012; 9: 97-106. http://dx.doi.org/10.1007/s11998-011-9321-6 DOI: https://doi.org/10.1007/s11998-011-9321-6
Poznyak SK, Zheludkevich ML, Raps D, Gammel F, Yasakau KA, Ferreira MGS. Preparation and corrosion protective properties of nanostructured titania-containing hybrid sol–gel coatings on AA2024. Prog Org Coat 2008; 62: 226-35. http://dx.doi.org/10.1016/j.porgcoat.2007.12.004 DOI: https://doi.org/10.1016/j.porgcoat.2007.12.004
Fujishima A, Hashimoto K, Watanabe T. TiO2 photocatalysis, Fundamental and Applications. BKC, Tokyo 1999; p. 66.
Watanabe T, Bull; Super hydrophilic TiO2 photocatalyst and its application. Ceram Soc Japan 1996; 31: 837-40.
Mathiazhagan A, Joseph R. Nanotechnology-A new prospective in organic coating –review. Int J Chem Eng Appl 2011; 2: 225-37. http://dx.doi.org/10.7763/IJCEA.2011.V2.108 DOI: https://doi.org/10.7763/IJCEA.2011.V2.108
Fujishima A, Rao TA, Tyrk DA. Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 2000; 1: 1-21. http://dx.doi.org/10.1016/S1389-5567(00)00002-2 DOI: https://doi.org/10.1016/S1389-5567(00)00002-2
Kumar GS. Functional coatings and microencapsulation: A general perspective.Available from http://www.Johnwiley.com
Sugama T. Cerium acetate-modified aminopropylsilanetriol: A precursor of corrosion-preventing coating for aluminum-finned condensers. J Coat Technol Res 2005; 2: 649-59. http://dx.doi.org/10.1007/BF02774594 DOI: https://doi.org/10.1007/BF02774594
Pepe A, Apericio M, Duran A, Cere S. Cerium hybrid silica coatings on stainless steel AISI 304 substrate. J Sol- Gel Sci Technol 2006; 39: 131-38. http://dx.doi.org/10.1007/s10971-006-9173-1 DOI: https://doi.org/10.1007/s10971-006-9173-1
Rabinovich EM. Sol-Gel technology for thin films, fibers, performs, electronics and speciality shapes, L.C Klein, New Jersey, USA 1988.
Wen J, Wilkes GL. Chem Organic/Inorganic hybrid network materials by the sol−gel approach Mater 1996; 8: 1667-81. DOI: https://doi.org/10.1021/cm9601143
Wang D, Bierwagen GP. Sol-gel coatings on metal for corrosion protection. Prog Org Coat 2009; 64: 327-38. http://dx.doi.org/10.1016/j.porgcoat.2008.08.010 DOI: https://doi.org/10.1016/j.porgcoat.2008.08.010
Castro Y, Ferrari B, Moreno R, Duran A. Silica sol-gel coatings on metals produced by EPD. J Sol-Gel Sci Technol 2003; 26: 735-39. http://dx.doi.org/10.1023/A:1020750222322 DOI: https://doi.org/10.1023/A:1020750222322
Messadeq SH, Pulcinelli SH, Santellii CV, Guastaldi AC, Messadeq Y. Microstructure and corrosion resistance of inorganic–organic (ZrO2–PMMA) hybrid coating on stainless steel. J Non Cryst Solids 1999; 247: 164-70. http://dx.doi.org/10.1016/S0022-3093(99)00058-7 DOI: https://doi.org/10.1016/S0022-3093(99)00058-7
Sylikan H, Senar S, Senar E, Sulu M. The sol-gel synthesis and application of some anticorrosive coating materials. Mater Sci 2003; 39: 733-39. http://dx.doi.org/10.1023/B:MASC.0000023514.74970.73 DOI: https://doi.org/10.1023/B:MASC.0000023514.74970.73
Sugama T, Gawlik K, Jung D. Polyaminopropylsiloxane coatings for geothermal air-cooled condensers. Recent Res Devel Mat Sci 2003; 4: 695.
Ono S, Tsuge H, Nishi Y, Hirano S. Improvement of corrosion resistance of metals by an environmentally friendly silica coating method. J Sol-Gel Sci Technol 2004; 29: 147-53. http://dx.doi.org/10.1023/B:JSST.0000023849.33761.86 DOI: https://doi.org/10.1023/B:JSST.0000023849.33761.86
Jianguo T, Gaoping G, Chuanwei Y. EIS study of corrosion behaviour of organic coating/Dacromet composite systems. Electrochim Acta 2005; 50: 3320-32. http://dx.doi.org/10.1016/j.electacta.2004.12.010 DOI: https://doi.org/10.1016/j.electacta.2004.12.010
Menning M, Schelle C, Duran A, Demborenea JJ, Guglielmi M, Brusatin G. Investigation of glass-like sol-gel coatings for corrosion protection of stainless steel against liquid and gaseous attack. J Sol-Gel Sci Technol 1998; 13: 712-22. http://dx.doi.org/10.1023/A:1008601224013 DOI: https://doi.org/10.1023/A:1008601224013
Sasaki T, Kamitani K. Preparation of thick and hard coating films via sol–gel process with a low temperature treatment. J Sol-Gel Sci Technol 2008; 46: 180-89. http://dx.doi.org/10.1007/s10971-008-1685-4 DOI: https://doi.org/10.1007/s10971-008-1685-4
Chen Y, Jin L, Xie Y. Sol-Gel processing of organic-inorganic nanocomposite protective coatings. J Sol-Gel Sci Technol 1998; 13: 735-38. http://dx.doi.org/10.1023/A:1008657408992 DOI: https://doi.org/10.1023/A:1008657408992
Joshua Y, Du, Damron M, Tang G, Zheng Prog H. Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates. Prog Org Coat 2001; 41: 226-32. http://dx.doi.org/10.1016/S0300-9440(01)00133-3 DOI: https://doi.org/10.1016/S0300-9440(01)00133-3
Palanivel V, Jhu D, Van Ooji WJ. Nanoparticle-filled silane films as chromate replacements for aluminum alloys. Prog Org Coat 2003; 47: 384-92. http://dx.doi.org/10.1016/j.porgcoat.2003.08.015 DOI: https://doi.org/10.1016/j.porgcoat.2003.08.015
Jhu D, Van Ooji WJ. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodium chloride solution: Part 2: mechanism for corrosion protection. Corr Sci 2003; 45: 2177-97. DOI: https://doi.org/10.1016/S0010-938X(03)00061-1
Jhu D, Van Ooji WJ. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in neutral sodium chloride solution. Part 1: corrosion of AA 2024-T3. Corr Sci 2003; 45: 2163-75. http://dx.doi.org/10.1016/S0010-938X(03)00060-X DOI: https://doi.org/10.1016/S0010-938X(03)00060-X
Jhu D, Van Ooji WJ. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane. Prog Org Coat 2004; 49: 42-53. http://dx.doi.org/10.1016/j.porgcoat.2003.08.009 DOI: https://doi.org/10.1016/j.porgcoat.2003.08.009
Mehner A, Datchary W, Bleil N, Zoch HW, Klopfstein MJ, Lucca DA. The influence of processing on crack formation, microstructure, density and hardness of sol- gel derived zirconia films. J Sol-Gel Sci Technol 2005; 36: 25-32. http://dx.doi.org/10.1007/s10971-005-4792-5 DOI: https://doi.org/10.1007/s10971-005-4792-5
Wu KH, Chao CM, Yeh TF. Thermal stability and corrosion resistance of polysiloxane coatings on 2024-T3 and 6061-T6 aluminum alloy. Surf Coat Technol 2007; 201: 5782-88. http://dx.doi.org/10.1016/j.surfcoat.2006.10.024 DOI: https://doi.org/10.1016/j.surfcoat.2006.10.024
Chou TP, Chandrasekaran C, Limmer SJ, Cao GZ. Organic–inorganichybrid coatings for corrosion protection. J Non Cryst Solids 2001; 290: 153-62. http://dx.doi.org/10.1016/S0022-3093(01)00818-3 DOI: https://doi.org/10.1016/S0022-3093(01)00818-3
Chou TP, Chandrasekaran C, Cao GZ. Sol-Gel-derived hybrid coatings for corrosion protection. J Sol–Gel Sci Technol 2003; 26: 321-27. http://dx.doi.org/10.1023/A:1020736107842 DOI: https://doi.org/10.1023/A:1020736107842
Voevodin NN, Grebasch NT, Soto WS, Kasten LS, Grant JT, Arnold FE. An organically modified zirconate film as a corrosion-resistant treatment for aluminum 2024-T3 Prog Org Coat 2001; 41: 287-93. http://dx.doi.org/10.1016/S0300-9440(01)00156-4 DOI: https://doi.org/10.1016/S0300-9440(01)00156-4
Voevodin N, Jeffcoate C, Simon L, Khobaib M, Donley M. Characterization of pitting corrosion in bare and sol–gel coated aluminum 2024-T3 alloy. Surf Coat Technol 2001; 140: 29-34. http://dx.doi.org/10.1016/S0257-8972(01)01000-3 DOI: https://doi.org/10.1016/S0257-8972(01)01000-3
Kasten LS, Grant JT, Grebasch N, Voevodin N, Arnold FE, Donley MS. An XPS study of cerium dopants in sol–gel coatings for aluminum 2024-T3. Surf Coat Technol 2001; 140: 11-15. http://dx.doi.org/10.1016/S0257-8972(01)01004-0 DOI: https://doi.org/10.1016/S0257-8972(01)01004-0
Voevodin NN, Grebasch NT, Arnold FE, Donley MS. Potentiodynamic evaluation of sol–gel coatings with inorganic inhibitors. Surf Coat Technol 2001; 140: 24-28. http://dx.doi.org/10.1016/S0257-8972(01)00999-9 DOI: https://doi.org/10.1016/S0257-8972(01)00999-9
Santiago A, González, Iruin JJ, Fernández-Berridi MJ, Irusta L. Preparation of superhydrophobic silica nanoparticles by microwave assisted sol–gel process. J Sol–Gel Sci Technol 2012; 61: 8-13. http://dx.doi.org/10.1007/s10971-011-2583-8 DOI: https://doi.org/10.1007/s10971-011-2583-8
Voevodin NN, Balbyshev VN, Khobaib M, Donley MS. Nanostructured coatings approach for corrosion protection. Prog Org Coat 2003; 47: 416-23. http://dx.doi.org/10.1016/S0300-9440(03)00131-0 DOI: https://doi.org/10.1016/S0300-9440(03)00131-0
Tan ALK, Soutar AM, Annergren IF, Liu YN. Multilayer sol–gel coatings for corrosion protection of magnesium. Surf Coat Technol 2005; 198: 478-82. http://dx.doi.org/10.1016/j.surfcoat.2004.10.066 DOI: https://doi.org/10.1016/j.surfcoat.2004.10.066
Khramov AN, Voevodin NN, Balbyshev VN, Donley MS. Hybrid organo-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors. Thin Solid Films 2004; 447: 549-57. http://dx.doi.org/10.1016/j.tsf.2003.07.016 DOI: https://doi.org/10.1016/j.tsf.2003.07.016
Khramov AN, Voevodin NN, Balbyshev VN, Mantz RA. Sol–gel-derived corrosion-protective coatings with controllable release of incorporated organic corrosion inhibitors. Thin Solid Films 2005; 483: 191-96. http://dx.doi.org/10.1016/j.tsf.2004.12.021 DOI: https://doi.org/10.1016/j.tsf.2004.12.021
Zheludkevich ML, Miranda I, Salvado, Ferreira MGS. Sol–gel coatings for corrosion protection of metals. J Mater Chem 2005; 15: 5099-11. http://dx.doi.org/10.1039/b419153f DOI: https://doi.org/10.1039/b419153f
Chung YJ, Jeanjaquet SL, Kendig MW. The Boeing Company, Corrosion inhibiting sol gel coatings for metal alloys US Patent 6579472.
Rekharsky MV, Inoue Y. Complexation Thermodynamics of Cyclodextrins. Chem Rev 1998; 98: 1875-15. http://dx.doi.org/10.1021/cr970015o DOI: https://doi.org/10.1021/cr970015o
Connors KA. The stability of cyclodextrin complexes in solutions. Chem Rev 1997; 97: 1325-57. http://dx.doi.org/10.1021/cr960371r DOI: https://doi.org/10.1021/cr960371r
Varma PCR, Duffy B, Cassidy J. Influence of magnesium nitrate on the corrosion performance of sol–gel coated AA2024-T3 aluminium alloy. Surf Coat Technol 2009; 204: 277-84. http://dx.doi.org/10.1016/j.surfcoat.2009.07.024 DOI: https://doi.org/10.1016/j.surfcoat.2009.07.024
Mouterlier V, Neveu B, Gigandet MP. Evolution of corrosion protection for sol gel coating doped with inorganic inhibitors. Surf Coat Technol 2008; 202: 2052-58. http://dx.doi.org/10.1016/j.surfcoat.2007.08.040 DOI: https://doi.org/10.1016/j.surfcoat.2007.08.040
Li S, Wang Q, Chen T, Zhou Z, Wang Y, Fu J. Nanoscale Research Letters 2012; 7: 227. doi:10.1186/1556-276X-7-227. http://dx.doi.org/10.1186/1556-276X-7-227 DOI: https://doi.org/10.1186/1556-276X-7-227
Raps D, Hack T, Weh J, Zheludkevic HML, Bastos AC, Ferreira MGS, Nuyken O. Electrochemical study of inhibitor-containing organic–inorganic hybrid coatings on AA2024. Corrosion Science 2009; 51: 1012-21. http://dx.doi.org/10.1016/j.corsci.2009.02.018 DOI: https://doi.org/10.1016/j.corsci.2009.02.018
Woudenberg FCM. Nanostructured oxide coatings via emulsion precipitation. Thesis, University of Twente, Enschede, Netherlands 2001.
Chemie VF. Investigation of stabilizing agents in thin sol-gel zirconium oxide anti-corrosion coatings on iron materials, Zur Erlangung des akademischen Grades eines, PhD thesis.
Varmaa PCR, Colreavya J, Cassidy JB, Oubahac M, Duffya B. McDonaghc, Effect of organic chelates on the performance of hybrid sol–gel coated AA 2024-T3 aluminum alloys. Prog Org Coat 2009; 66: 406-11. http://dx.doi.org/10.1016/j.porgcoat.2009.09.004 DOI: https://doi.org/10.1016/j.porgcoat.2009.09.004
Nazeri A, Qadri SB. Alumina-stabilized zirconia coatings for high-temperature protection of turbine blades. Surf Coat Technol 1996; 86: 166-69. DOI: https://doi.org/10.1016/S0257-8972(96)03025-3
Rout TK. Anti-Corrosion Methods and Materials, research, development and technology,Tata Steel Ltd (Europe), Ijmuiden, The Netherlands. Available from http://www. emeraldinsight.com
Akid R, Wang HM, Smith TJ, Greenfield D, Earthman JC. Biological functionalization of a sol–gel coating for the mitigation of microbial-induced corrosion. Adv Funct Mater 2008; 18: 203-11. http://dx.doi.org/10.1002/adfm.200600493 DOI: https://doi.org/10.1002/adfm.200600493
Akid 1, Wang H, Gobara M, Smith TJ, Gittens J. Green Coatings for Industrial ApplicationsR Materials and Engineering Research Institute, Biomedical Research Centre, Sheffield Hallam University. Available from http://www.shu.ac.uk
Certhouxa E, Ansarta F, Turqa V, Boninoa JP, Sobrinob JM, Garciab J, Rebyc J. New sol–gel formulations to increase the barrier effect of a protective coating against the corrosion of steels. Prog Org Coat 2013; 76: 165-72. http://dx.doi.org/10.1016/j.porgcoat.2012.09.002 DOI: https://doi.org/10.1016/j.porgcoat.2012.09.002
Collazo A, Covelo A, Nóvoa XR, Pérez C, Corrosion protection performance of sol–gel coatings doped with red mud applied on AA2024-T3. Prog Org Coat 2012; 74: 334-42. http://dx.doi.org/10.1016/j.porgcoat.2011.10.001 DOI: https://doi.org/10.1016/j.porgcoat.2011.10.001
Chevdov D, Ostap S, Le T. Surface properties of red mud particles from potentiometric titration. Colloids Surf 2001; 182: 131. http://dx.doi.org/10.1016/S0927-7757(00)00814-1 DOI: https://doi.org/10.1016/S0927-7757(00)00814-1
Pascual J, Corpas FA, Lopez-Beceiro J, Benítez-Guerrero M, Artiaga R. Thermal characterization of a spanish red mud. J Therm Anal Cal 2009; 96: 407-18. http://dx.doi.org/10.1007/s10973-008-9230-9 DOI: https://doi.org/10.1007/s10973-008-9230-9
Egloffstein TA. Natural bentonites—influence of the ion exchange and partial desiccation on permeability and self-healing capacity of bentonites used in GCLs. Geotextiles and Geomembrances 2001; 19: 427-44. http://dx.doi.org/10.1016/S0266-1144(01)00017-6 DOI: https://doi.org/10.1016/S0266-1144(01)00017-6
Hikasa A, Sekino T, Hayashi Y, Rajagopalan R, Niihara K. Preparation and corrosion studies of self-healing multi-layered nano Coatings of silica and swelling Clay. Mat Res Innovat 2004; 8.2, 84-88. 1432-8917. DOI: https://doi.org/10.1080/14328917.2004.11784835
Keyoonwong W, Guo Y, Kubouchi M, Aoki S, Sakai T. International Journal of corrosion 2012; 2012. Article ID 924283, 10 pages doi:10.1155/2012/924283. Available from http://dx.doi.org/10.1155/2012/924283 DOI: https://doi.org/10.1155/2012/924283
Curtu O, Motoc DL. Theoretical - experimental comparisons of multi-phase composite materials elastic coefficients retrieved from tensile, compressive and bending tests. Influencing Factors. Material Plastice 2008; 45: 366-71.
Esfandiari A, Nazokdast H, Rashidi A-S, Yazdanshenas M-E. Review of polymer-organoclaynanocomposites. J Appl Sci 2008; 8: 545-61. DOI: https://doi.org/10.3923/jas.2008.545.561
Esfandiari A. The statistical investigation of mechanical properties of PP/natural fibers composites. Fibers Polymers 2008; 9: 48-54. http://dx.doi.org/10.1007/s12221-008-0008-2 DOI: https://doi.org/10.1007/s12221-008-0008-2
Shan C, Zheng G, Wang L, Peiyao L, Guojun S, Zhenbin G, Xiaoyu Y. Preparation, Characterization, and application of NR/SBR/organoclay nanocomposites in the tire industry. J Appl Polymer Sci 2011; 119: 1185-94. http://dx.doi.org/10.1002/app.32773 DOI: https://doi.org/10.1002/app.32773
Sterky K, Jacobsen H, Jakubowicz I, Yarahmadi N, Hjertberg T, Influence of processing technique on morphology and mechanical properties of PVC nanocomposites. Eur Polym J, 2010; 46: 1203-209. http://dx.doi.org/10.1016/j.eurpolymj.2010.03.021 DOI: https://doi.org/10.1016/j.eurpolymj.2010.03.021
Sterky K, Hjertberg T, Jacobsen H. Effect of montmorillonite treatment on the thermal stability of poly(vinyl chloride) nanocomposites. Polymer Degradation Stability 2009; 94: 1564-70. DOI: https://doi.org/10.1016/j.polymdegradstab.2009.04.036
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Saheli Bera, G. Udayabhanu, Ramanuj Narayan, T.K. Rout
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .