Bioactive Compounds of Acai (Euterpe oleracea) and the Effect of their Consumption on Oxidative Stress Markers
DOI:
https://doi.org/10.6000/1929-5634.2021.10.01Keywords:
Açaí, bioactive compounds, antioxidant capacity, oxidative stress, intervention study.Abstract
Açaí fruit (Euterpe oleracea Martius) is highly perishable, so it sought to apply conservation techniques that make its commercialization more bearable such as dehydration by the tray. This thermal technique that significantly inactivates harmful enzymes and microorganisms prolongs their shelf life but has the disadvantage that it decreases the proportion of bioactive components and its antioxidant power. The present work aims to estimate the content and antioxidant activity of the bioactive compounds of açaí powder supplied in hydroxypropyl methylcellulose (HPMC) vegetable capsules. For this purpose, total polyphenols were determined by the Folin-Ciocalteau test, total anthocyanin’s by the differential pH test, and the antioxidant capacity in vitro DPPH method (using Trolox and Vitamin C equivalent). Also, the effect of consumption of four daily capsules on a healthy population (10 people) between the ages of 33-65 years old evaluated through a 10-day intervention study in which the following biomarkers in blood assessed: glycemia, triglycerides, total cholesterol, HDL, LDL, and 8-isoprostane. The açaí powder showed a total polyphenol content of 962.7±22.2 mg EAG/100g, total anthocyanin’s up to 938.5±19.1 mg C3GE/100g, the antioxidant capacity of 643±24.32 µmol TE/100g and 14.07±0.45 g VCE/100g. In the intervention study, no significant differences were observed between before and after the different biochemical markers except for 8-isoprostane, suggesting that the consumption of dehydrated açaí caused effects benefices in the population tested.
References
Strudwick J, Sobel GL. Uses of Euterpe oleracea Mart. in the Amazon estuary, Brazil. Adv Econ Bot 1988; 6: 225-253
Brondizio ES, Siqueira AD. From extractivists to forest farmers: changing concepts of agricultural intensification and peasantry in the Amazon estuary. Res Econ Anthropology 1997; 18: 233-79.
Schauss A, Jensen G, Wu X. Açaí (Euterpe oleracea). An Amazonian Palm Fruit with Broad Antioxidant and Anti-inflammatory Activities. In: Qian M and Rimando A, editors. Flavor and Health Benefits of Small Fruits. Washington, DC: J Am Chem Soc 2010; 213-223. https://doi.org/10.1021/bk-2010-1035.ch013 DOI: https://doi.org/10.1021/bk-2010-1035.ch013
Haslam E. Che faro senza polifenoli? in: Gross G, Hemingway R, YoshidaTakashi, editors. Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology. New York. Kluwer Academic / Plenum Publishers 1999; p. 17-20. https://doi.org/10.1007/978-1-4615-4139-4 DOI: https://doi.org/10.1007/978-1-4615-4139-4_2
Martinez N, Del Mar Camacho M, Martinez JJ. Los compuestos bioactivos de las frutas y sus efectos en la salud. Act Diet 2008;12: 64-8. https://doi.org/10.1016/S1138-0322(08)75623-2 DOI: https://doi.org/10.1016/S1138-0322(08)75623-2
Jensen G, Wu X, Patterson K, Barnes J, Carter S, Scherwitz L, Beaman R, Endres J, Schauss A. In vitro and in vivo Antioxidant and Anti-inflammatory Capacities of an Antioxidant-Rich Fruit and Berry Juice Blend. Results of a Pilot and Randomized, Double-Blinded, Placebo-Controlled, Crossover Study. J Agric Food Chem 2008; 56: 8326–8333. https://doi.org/10.1021/jf8016157 DOI: https://doi.org/10.1021/jf8016157
Mena P, Dominguez-Perles R, Girones-Vilaplana A, Baenas N, Garcia-Viguera C, Villano D. Flavan-3-ols, anthocyanins, and inflammation. IUBMB Life 2014; 66, 745–758. https://doi.org/10.1002/iub.1332 DOI: https://doi.org/10.1002/iub.1332
De Souza MO, Silva M, Silva ME, Oliveira R, Pedrosa ML. Diet supplementation with açaí (Euterpe oleracea Mart.) pulp improves biomarkers of oxidative stress and the serum lipid profile in rats. Nutrition 2010; 26: 804 10. https://doi.org/10.1016/j.nut.2009.09.007 DOI: https://doi.org/10.1016/j.nut.2009.09.007
Feio C, Izar M, Ihara S, Kasmas S, Martins C, Feio M, Maués L, Borges N, Moreno R, Póvoa R, Fonseca F. Euterpe oleracea (açai) modifies sterol metabolism and attenuates experimentally-induced atherosclerosis. J Atheroscler Thromb 2012; 19: 237–245. https://doi.org/10.5551/jat.11205 DOI: https://doi.org/10.5551/jat.11205
Udani J, Singh B, Singh V, Barrett M: Effects of Açai (Euterpe oleracea Mart.) berry preparation on metabolic parameters in a healthy overweight population: A pilot study. Nutr J 2011; 10: 42-45. https://doi.org/10.1186/1475-2891-10-45 DOI: https://doi.org/10.1186/1475-2891-10-45
Pala D, Barbosa PO, Silva CT, De Souza MO, Freitas FR, Volp AC, Maranhão RC, De Freitas RN. Açaí (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein, and redox metabolism: a prospective study in women. Clin Nutr 2018; 37: 618-623. https://doi.org/10.1016/j.clnu.2017.02.001 DOI: https://doi.org/10.1016/j.clnu.2017.02.001
Rogez H, Akwie SN, Moura FG, Larondelle Y. Kinetic modeling of anthocyanin degradation and microorganism growth during postharvest storage of açaí fruits (Euterpe oleracea). J Food Sci 2012; 77: C13001306. https://doi.org/10.1111/j.1750-3841.2012.02996.x DOI: https://doi.org/10.1111/j.1750-3841.2012.02996.x
A.O.A.C (Official Methods of Analysis). Official Methods of Analysis. Vol.I.17th ed. Association of Analytical Washington. DC. USA 2000.
United States Pharmacopeia and National Formulary. USP 38-NF 33. Rockville, MD: United States Pharmacopeial Convention. 2013.
United States Pharmacopeia and National Formulary. USP 32-NF 27. Rockville, MD: United States Pharmacopeial Convention 2012.
Singleton VL, Rossi J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic 1965; 16: 144-158. DOI: https://doi.org/10.5344/ajev.1965.16.3.144
Giusti M, Wrolstad R. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Current Protocols in Food Analytical Chemistry 2001; F1.2.1-F1.2.13. https://doi.org/10.1002/0471142913.faf0102s00 DOI: https://doi.org/10.1002/0471142913.faf0102s00
Brand-Williams W, Cuvelier M E, Berset C. Use of free radical method to evaluate antioxidant activity. Lebensm.-Wiss. Technol 1995; 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5
Sánchez-Moreno C. Compuestos polifenólicos: estructura y classificación: presencia en alimentos y consumo: biodisponibilidad y metabolismo. Alimentaria: Revista de tecnología e higiene de los alimentos 2002; 329: 19–28.
Dae-Ok K, Lee KW, Hyong JL, Chang Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 2002; 50: 3713-7. https://doi.org/10.1021/jf020071c DOI: https://doi.org/10.1021/jf020071c
World Medical Association. Declaration of Helsinki, 1st (Tokyo) amendment. 1975.
Cameron N, Hiernaux J, Jarman S, Marshall W, Tanner J, Whitehouse R. Anthropometry. In Practical Human Biology, J.S. Weiner, and J.A. Lourie, editors. London: Academic Press 1981, p. 27-52
Statistical Package for the Social Sciences (SPSS) Categories 13.0. Meulman JJ and Heiser WJ SPSS. Inc. Web site at http://www.spss.com or contact. SPSS Inc. Chicago. Illinois; 2012. USA
Moura RS, Ferreira TS, Lopes AA, Pires KM, Nesi R, Resende AC, Souza P J, Da Silva AJ, Valenca S. Effects of Euterpe oleracea Mart. (açaí) extract in acute lung inflammation induced by cigarette smoke in the mouse. Phytomedicine 2012; 19: 262–269. https://doi.org/10.1016/j.phymed.2011.11.004 DOI: https://doi.org/10.1016/j.phymed.2011.11.004
Melo PS, Mabe CM, Gonçalves RH, Oliveira De J, Prado A, Matias S. Açaí seeds: An unexplored agro-industrial residue as a potential source of lipids, fibers, and antioxidant phenolic compounds. Ind Crop Prod 2021; 161: 113204. https://doi.org/10.1016/j.indcrop.2020.113204 DOI: https://doi.org/10.1016/j.indcrop.2020.113204
Franco LB, Zambiazi RC, Vieira CJ. Biocompounds and physical properties of açaí pulp dried by different methods. LWT - Food Sci Technol 2018; 335-340. https://doi.org/10.1016/j.lwt.2018.08.058 DOI: https://doi.org/10.1016/j.lwt.2018.08.058
Schauss A, Wu X, Prior RL, Ou B, Patel D, Huang D, Kababick JP. Phytochemical and nutrient composition of the freeze-dried amazonian palm berry, Euterpe oleraceae Mart. (açaí). J Agric Food Chem 2006; 54: 8598- 8603. https://doi.org/10.1021/jf060976g DOI: https://doi.org/10.1021/jf060976g
Nascimento RJS, Couri S, Antoniassi R, Freitas SP. Composição em ácidos graxos do óleo da polpa de açaí extraído com enzimas e com hexano. Revista Brasileira de Fruticultura 2008; 30: 498–502. https://doi.org/10.1590/S0100-29452008000200040 DOI: https://doi.org/10.1590/S0100-29452008000200040
Santos EHF, Figueiredo A, Donzeli VP. Aspectos físico-químicos e microbiológicos de polpas de frutas comercializadas em Petrolina (PE) e Juazeiro (BA). Braz J Food Technol 2016; 19 e2015089. https://doi.org/10.1590/1981-6723.8915 DOI: https://doi.org/10.1590/1981-6723.8915
De Faria C, Modolo R, Moreno H. Plasma 8-Isoprostane as a Biomarker and Applications to Cardiovascular Disease. Biomarkers in Cardiovascular 2016; 467-488. https://doi.org/10.1007/978-94-007-7678-4_31 DOI: https://doi.org/10.1007/978-94-007-7678-4_31
Rossetto R, Maciel GM, Rampazzo V, Charles I. Acai pulp and seeds as emerging sources of phenolic compounds for enrichment of residual yeasts (Saccharomyces cerevisiae) through biosorption process. LWT 2020; 128: 109447. https://doi.org/10.1016/j.lwt.2020.109447 DOI: https://doi.org/10.1016/j.lwt.2020.109447
Lee J. Anthocyanins of açai products in the United States. NFS Journal 2019; 14-15: 14-21. https://doi.org/10.1016/j.nfs.2019.05.001 DOI: https://doi.org/10.1016/j.nfs.2019.05.001
Pacheco-Palencia LA, Duncan ChE, Talcot StT. Phytochemical composition and thermal stability of two commercial açaí species, Euterpe oleracea and Euterpe precatoria. Food Chem 2009; 115: 1199-1205. https://doi.org/10.1016/j.foodchem.2009.01.034 DOI: https://doi.org/10.1016/j.foodchem.2009.01.034
Vera V, Hillebrand S, Montilla E, Bobbio F, Winterhalter P. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and açaí (Euterpe oleracea Mart.) by HPLC-PDA-MS/MS. J Food Compos Anal 2008; 21:291-299. https://doi.org/10.1016/j.jfca.2008.01.001 DOI: https://doi.org/10.1016/j.jfca.2008.01.001
Gallori S, Bilia AR, Bergonzi MC, Barbosa WLR, Vincieri FF. Polyphenolic constituents of anthocyanins from the açaí fruit (Euterpe oleracea) Mart Cienc Technol Aliment 2004; 20: 388–390.
Schauss A, Wu X, Prior RL, Ou B, Huang D, Owens J, Agarwal A, Jensen GS, Hart AN, Shanbrom E. Antioxidant capacity and other bioactivities of the freeze-dried amazonian palm berry, Euterpe oleraceae Mart. (açaí). J Agric Food Chem 2006; 54: 8604-8610. https://doi.org/10.1021/jf0609779 DOI: https://doi.org/10.1021/jf0609779
Pozo-Insfran DD, Brenes CH, Talcoot ST. Phytochemical composition and pigment stability of açaí (Euterpe oleracea Mart.). J Agric Food Chem 2004; 52, 1539–1545. https://doi.org/10.1021/jf035189n DOI: https://doi.org/10.1021/jf035189n
Pozo-Insfran DD, Percival SS, Talcott ST. Açaí (Euterpe oleracea Mart.) polyphenolics in their glycoside and aglycone forms induce apoptosis of HL-60 leukemia cells. J Agric Food Chem 2006; 54: 1222–1229. https://doi.org/10.1021/jf052132n DOI: https://doi.org/10.1021/jf052132n
Lichtenthaler R, Rodrigues RB, Maia JG, Papagiannopoulos M, Fabricius H, Marx F. Total oxidant scavenging capacities of Euterpe oleracea Mart. (Açaí) fruits. Int J Food Sci Nutr 2005; 56:5364. https://doi.org/10.1080/09637480500082082 DOI: https://doi.org/10.1080/09637480500082082
Carvalho J, Greggi L, Ferro A, Castania J, Vera de R V, Zerlotti A, Pires ML. Evaluation of the genotoxic and antigenotoxic effects after acute and subacute treatments with açaí pulp (Euterpe oleracea Mart) on mice using erythrocytes micronucleus test and the comet assay. Mutat Res 2010; 695: 22–28. https://doi.org/10.1016/j.mrgentox.2009.10.009 DOI: https://doi.org/10.1016/j.mrgentox.2009.10.009
Kang J, Thakali K, Xie C, Kondo M, Tong Y, Ou B, Jensen G, Medina M, Schauss A, Wu X. Bioactivities of açaí (Euterpe precatoria Mart.) fruit pulp, superior antioxidant and anti-inflammatory properties to Euterpe oleracea Mart. Food Chem 2012; 133: 6717. https://doi.org/10.1016/j.foodchem.2012.01.048 DOI: https://doi.org/10.1016/j.foodchem.2012.01.048
Medina MB. Simple and rapid method for the analysis of phenolic compounds in beverages and grains. J Agric Food Chem 2011; 59: 1565-1571. https://doi.org/10.1021/jf103711c DOI: https://doi.org/10.1021/jf103711c
Aymoto H N, Genovese MI, Lajolo FM. Antioxidant Activity of Dietary Fruits, Vegetables, and Commercial Frozen Fruit Pulps. J Agric Food Chem 2005; 53: 2928-2935. https://doi.org/10.1021/jf047894h DOI: https://doi.org/10.1021/jf047894h
Dasgupta A, Klein K. Fruit Fruits, Vegetables, and Nuts: Good Sources of Antioxidants. In: Elsevier Inc, editors. Antioxidants in Food, Vitamins and Supplements: Prevention and Treatment of Disease. USA 2014; 12: 209-232. https://doi.org/10.1016/C2012-0-02831-1 DOI: https://doi.org/10.1016/B978-0-12-405872-9.00012-4
Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Investig 2005; 115: 1111-1119. https://doi.org/10.1172/JCI25102 DOI: https://doi.org/10.1172/JCI25102
Grattagliano I, Palmieri V, Portincasa P, Moschetta A, Palasciano G. Oxidative stress-induced risk factors associated with the metabolic síndrome: a unifying hypothesis. J Nutr Biochem 2008; 19: 491-504. https://doi.org/10.1016/j.jnutbio.2007.06.011 DOI: https://doi.org/10.1016/j.jnutbio.2007.06.011
Alessio H. Lipid peroxidation in healthy and diseased models: influence of different types of exercise. In: Handbook of Oxidants and Antioxidants in Exercise. (Sen C.K, Packer L and Hänninen O. ed.) Elsevier Science, Armsterdam, 2000; 115-127. https://doi.org/10.1016/B978-044482650-3/50005-5 DOI: https://doi.org/10.1016/B978-044482650-3/50005-5
Requena JR, Fu MX, Ahmed MU, Jenkins AJ, Lyons TJ, Thorpe SR. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions. Nephrol Dial Transplant 1996; 11: 48-53. https://doi.org/10.1093/ndt/11.supp5.48 DOI: https://doi.org/10.1093/ndt/11.supp5.48
Sevanian A, Hochstein P. Mechanisms and consequences of lipid peroxidation in biological systems. Annu Rev Nutr 1985; 5: 365-390. https://doi.org/10.1146/annurev.nu.05.070185.002053 DOI: https://doi.org/10.1146/annurev.nu.05.070185.002053
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .