L-Arginine in Nutrition: Multiple Beneficial Effects in the Etiopathology of Diabetes
DOI:
https://doi.org/10.6000/1929-5634.2012.01.02.3Keywords:
L-arginine, diabetes, beta-cells, insulin resistance, obesityAbstract
L-arginine is a nutritionally important amino acid that controls a wide spectrum of cellular functions and physiological processes, acting by itself or through its various metabolites. There are several factors that determine overall L-arginine homeostasis: dietary supplementation, endogenous de novo synthesis, whole-body protein turnover and its extensive metabolism. The destiny of L-arginine is determined by the complex network of enzymes and pathways differentially expressed according to health and disease status. Diabetes is characterized by reduced concentrations of L-arginine in plasma and many tissues, and failure of its metabolic effects. Emerging data suggest that oral supplementation of L-arginine exerts multiple beneficial effects on the complex etiological and pathophysiological basis of diabetes including: i) β-cell function and mass and ii) obesity and peripheral insulin resistance. This review emphasizes important aspects of L-arginine action which classifies this amino acid as a promising therapeutic approach in the treatment of diabetes.
References
Schulze E, Steiger E. Uber das. Arginin. Z Physiol Chem 1886; 11: 43-65. DOI: https://doi.org/10.1515/bchm1.1887.11.1-2.43
Palmer RM, Rees DD, Ashton DS, Moncada S. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 1988; 153: 1251-6. http://dx.doi.org/10.1016/S0006-291X(88)81362-7 DOI: https://doi.org/10.1016/S0006-291X(88)81362-7
Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 1987 84: 9265-9. http://dx.doi.org/10.1073/pnas.84.24.9265 DOI: https://doi.org/10.1073/pnas.84.24.9265
Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524-6. http://dx.doi.org/10.1038/327524a0 DOI: https://doi.org/10.1038/327524a0
Wu G, Morris SM Jr. Arginine metabolism: nitric oxide and beyond. Biochem J 1998; 336: 1-17. DOI: https://doi.org/10.1042/bj3360001
Dhanakoti SN, Brosnan JT, Brosnan ME, Herzberg GR. Net renal arginine flux in rats is not affected by dietary arginine or dietary protein intake. J Nutr 1992; 122: 1127-34.
Castillo L, Chapman TE, Sanchez M, et al. Plasma arginine and citrulline kinetics in adults given adequate and arginine-free diets. Proc Natl Acad Sci U S A 1993; 90: 7749-53. http://dx.doi.org/10.1073/pnas.90.16.7749 DOI: https://doi.org/10.1073/pnas.90.16.7749
Castillo L, Ajami A, Branch S, et al. Plasma arginine kinetics in adult man: response to an arginine-free diet. Metabolism 1994; 43: 114-22. http://dx.doi.org/10.1016/0026-0495(94)90166-X DOI: https://doi.org/10.1016/0026-0495(94)90166-X
Barbul A. Arginine: biochemistry, physiology, and therapeutic implications. JPEN J Parenter Enteral Nutr 1986; 10: 227-38. http://dx.doi.org/10.1177/0148607186010002227 DOI: https://doi.org/10.1177/0148607186010002227
Flynn NE, Meininger CJ, Haynes TE, Wu G. The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 2002; 56: 427-38. http://dx.doi.org/10.1016/S0753-3322(02)00273-1 DOI: https://doi.org/10.1016/S0753-3322(02)00273-1
Palm F, Friederich M, Carlsson PO, Hansell P, Teerlink T, Liss P. Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: implications for renomedullary oxygen availability. Am J Physiol Renal Physiol 2008; 294: 30-7. http://dx.doi.org/10.1152/ajprenal.00166.2007 DOI: https://doi.org/10.1152/ajprenal.00166.2007
Pieper GM, Dondlinger LA. Plasma and vascular tissue arginine are decreased in diabetes: acute arginine supplementation restores endothelium-dependent relaxation by augmenting cGMP production. J Pharmacol Exp Ther 1997; 283: 684-91.
Taboada MC, Rodriguez B, Millán R, Míguez I. Role of dietary l-arginine supplementation on serum parameters and intestinal enzyme activities in rats fed an excess-fat diet. Biomed Pharmacother 2006; 60: 10-3. http://dx.doi.org/10.1016/j.biopha.2005.07.014 DOI: https://doi.org/10.1016/j.biopha.2005.07.014
Witte MB, Thornton FJ, Tantry U, Barbul A. L-Arginine supplementation enhances diabetic wound healing: involvement of the nitric oxide synthase and arginase pathways. Metabolism 2002; 51: 1269-73. http://dx.doi.org/10.1053/meta.2002.35185 DOI: https://doi.org/10.1053/meta.2002.35185
Bode-Böger SM, Böger RH, Creutzig A, et al. L-arginine infusion decreases peripheral arterial resistance and inhibits platelet aggregation in healthy subjects. Clin Sci (Lond) 1994; 87: 303-10. DOI: https://doi.org/10.1042/cs0870303
Phivthong-ngam L, Bode-Böger SM, Böger RH, et al. Dietary L-arginine normalizes endothelin-induced vascular contractions in cholesterol-fed rabbits. J Cardiovasc Pharmacol 1998; 32: 300-7. http://dx.doi.org/10.1097/00005344-199808000-00019 DOI: https://doi.org/10.1097/00005344-199808000-00019
Böger RH, Ron ES. L-Arginine improves vascular function by overcoming deleterious effects of ADMA, a novel cardiovascular risk factor. Altern Med Rev 2005; 10: 14-23. DOI: https://doi.org/10.1191/1358863x05vm594ed
Silk DB, Grimble GK, Rees RG. Protein digestion and amino acid and peptide absorption. Proc Nutr Soc 1985; 44: 63-72. http://dx.doi.org/10.1079/PNS19850011 DOI: https://doi.org/10.1079/PNS19850011
Wu G, Collins JK, Perkins-Veazie P, et al. Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr 2007; 137: 2680-5. DOI: https://doi.org/10.1093/jn/137.12.2680
Hou ZP, Yin YL, Huang RL, et al. Rice protein concentrate partially replaces dried whey in the diet for early-weaned piglets and improves their growth performance. J Sci Food Agric 2008; 88: 1187-1193. http://dx.doi.org/10.1002/jsfa.3196 DOI: https://doi.org/10.1002/jsfa.3196
King DE, Mainous AG, Geesey ME. Variation in L-arginine intake follow demographics and lifestyle factors that may impact cardiovascular disease risk. Nutr Res 2008; 28: 21-4. http://dx.doi.org/10.1016/j.nutres.2007.11.003 DOI: https://doi.org/10.1016/j.nutres.2007.11.003
Böger RH. The pharmacodynamics of L-arginine. J Nutr 2007; 137: 1650-5. DOI: https://doi.org/10.1093/jn/137.6.1650S
Windmueller HG, Spaeth AE. Metabolism of absorbed aspartate, asparagine, and arginine by rat small intestine in vivo. Arch Biochem Biophys 1976; 175: 670-6. http://dx.doi.org/10.1016/0003-9861(76)90558-0 DOI: https://doi.org/10.1016/0003-9861(76)90558-0
Castillo L, Chapman TE, Yu YM, Ajami A, Burke JF, Young VR. Dietary arginine uptake by the splanchnic region in adult humans. Am J Physiol 1993; 265: 532-9. DOI: https://doi.org/10.1152/ajpendo.1993.265.4.E532
Kirk SJ, Hurson M, Regan MC, Holt DR, Wasserkrug HL, Barbul A. Arginine stimulates wound healing and immune function in elderly human beings. Surgery 1993; 114: 155-60.
Brittenden J, Heys SD, Ross J, Park KG, Eremin O. Natural cytotoxicity in breast cancer patients receiving neoadjuvant chemotherapy: effects of L-arginine supplementation. Eur J Surg Oncol 1994; 20: 467-72.
Helmbrecht GD, Farhat MY, Lochbaum L, et al. L-arginine reverses the adverse pregnancy changes induced by nitric oxide synthase inhibition in the rat. Am J Obstet Gynecol 1996; 175: 800-5. http://dx.doi.org/10.1016/S0002-9378(96)80002-0 DOI: https://doi.org/10.1016/S0002-9378(96)80002-0
Bortolotti M, Brunelli F, Sarti P, Miglioli M. Clinical and manometric effects of L-arginine in patients with chest pain and oesophageal motor disorders. Ital J Gastroenterol Hepatol 1997; 29: 320-4.
Facchinetti F, Longo M, Piccinini F, Neri I, Volpe A. L-arginine infusion reduces blood pressure in preeclamptic women through nitric oxide release. J Soc Gynecol Investig 1999; 6: 202-7. http://dx.doi.org/10.1016/S1071-5576(99)00017-9 DOI: https://doi.org/10.1177/107155769900600407
Walker HA, McGing E, Fisher I, et al. Endothelium-dependent vasodilation is independent of the plasma L-arginine/ADMA ratio in men with stable angina: lack of effect of oral L-arginine on endothelial
function, oxidative stress and exercise performance. J Am Coll Cardiol 2001; 38: 499-505. http://dx.doi.org/10.1016/S0735-1097(01)01380-8 DOI: https://doi.org/10.1016/S0735-1097(01)01380-8
Tangphao O, Chalon S, Coulston AM, et al. L-arginine and nitric oxide-related compounds in plasma: comparison of normal and arginine-free diets in a 24-h crossover study. Vasc Med 1999; 4: 27-32. DOI: https://doi.org/10.1191/135886399674294736
Evans RW, Fernstrom JD, Thompson J, Morris SM Jr, Kuller LH. Biochemical responses of healthy subjects during dietary supplementation with L-arginine. J Nutr Biochem 2004; 15: 534-9. http://dx.doi.org/10.1016/j.jnutbio.2004.03.005 DOI: https://doi.org/10.1016/j.jnutbio.2004.03.005
Luiking YC, Weusten BL, Portincasa P, Van Der Meer R, Smout AJ, Akkermans LM. Effects of long-term oral L-arginine on esophageal motility and gallbladder dynamics in healthy humans. Am J Physiol 1998; 274: 984-91. DOI: https://doi.org/10.1152/ajpgi.1998.274.6.G984
Grimble GK. Adverse gastrointestinal effects of arginine and related amino acids. J Nutr 2007; 137: 1693-1701. DOI: https://doi.org/10.1093/jn/137.6.1693S
Park KGM. The Sir David Cuthbertson Medal Lecture 1992. The immunological and metabolic effects of L-arginine in human cancer. Proc Nutr Soc 1993; 52: 387-401. http://dx.doi.org/10.1079/PNS19930080 DOI: https://doi.org/10.1079/PNS19930080
Tomé LA, Yu L, de Castro I, Campos SB, Seguro AC. Beneficial and harmful effects of L-arginine on renal ischaemia. Nephrol Dial Transplant 1999; 14: 1139-45. http://dx.doi.org/10.1093/ndt/14.5.1139 DOI: https://doi.org/10.1093/ndt/14.5.1139
AHFS Drug Information. Bethesda, MD: American Society of Hospital Pharmacists. 2000: 2306-7.
Cauwels A, Janssen B, Buys E, Sips P, Brouckaert P. Anaphylactic shock depends on PI3K and eNOS-derived NO. J Clin Invest 2006; 116: 2244-51. http://dx.doi.org/10.1172/JCI25426 DOI: https://doi.org/10.1172/JCI25426
Amir S, English AM. An inhibitor of nitric oxide production, NG-nitro-L-arginine-methyl ester, improves survival in anaphylactic shock. Eur J Pharmacol 1991; 203: 125-7. http://dx.doi.org/10.1016/0014-2999(91)90800-6 DOI: https://doi.org/10.1016/0014-2999(91)90800-6
Takano H, Liu W, Zhao Z, et al. N(G)-Nitro-L-arginine methyl ester, but not methylene blue, attenuates anaphylactic hypotension in anesthetized mice. J Pharmacol Sci 2007; 104: 212-7. http://dx.doi.org/10.1254/jphs.FP0070169 DOI: https://doi.org/10.1254/jphs.FP0070169
Schulman SP, Becker L C, Kass DA, et al. L-arginine therapy in myo-cardial infarction. The Vascular Interaction with Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA 2006; 295: 58-64. http://dx.doi.org/10.1001/jama.295.1.58 DOI: https://doi.org/10.1001/jama.295.1.58
Takano H, Lim HB, Miyabara Y, Ichinose T, Yoshikawa T, Sagai M. Oral administration of L-arginine potentiates allergen-induced airway inflammation and expression of interleukin-5 in mice. J Pharmacol Exp Ther 1998; 286: 767-71.
Chambers DC, Ayres JG. Effect of nebulised L- and D-arginine on exhaled nitric oxide in steroid naive asthma. Thorax 2001; 56: 602-6. http://dx.doi.org/10.1136/thorax.56.8.602 DOI: https://doi.org/10.1136/thx.56.8.602
Tankersley RW. Amino acid requirements of herpes simplex virus in human cells. J Bacteriol 1964; 87: 609-13 DOI: https://doi.org/10.1128/jb.87.3.609-613.1964
Yeatman TJ, Risley GL, Brunson ME. Depletion of dietary arginine inhibits growth of metastatic tumor. Arch Surg 1991; 126: 1376-82. http://dx.doi.org/10.1001/archsurg.1991.01410350066010 DOI: https://doi.org/10.1001/archsurg.1991.01410350066010
Grossie VB. Citrulline and arginine increase the growth of the ward colon tumor in parenterally fed rats. Nutr Cancer 1996; 26: 91-7. http://dx.doi.org/10.1080/01635589609514466 DOI: https://doi.org/10.1080/01635589609514466
Appleton J. Arginine: Clinical potential of a semi-essential amino. Altern Med Rev 2002; 7: 512-22.
Eeagle H. Amino acid metabolism in mammalian cell cultures. Science 1959; 130: 432-7. http://dx.doi.org/10.1126/science.130.3373.432 DOI: https://doi.org/10.1126/science.130.3373.432
Jackson MJ, Beaudet AL, O'Brien WE. Mammalian urea cycle enzymes. Annu Rev Genet 1986; 20: 431-64. http://dx.doi.org/10.1146/annurev.ge.20.120186.002243 DOI: https://doi.org/10.1146/annurev.ge.20.120186.002243
Morris Sm Jr. Arginine synthesis, metabolism and transport: Regulators of nitric oxide synthesis. In: Laskin JD, Laskin DL, editors. Cellular and Molecular Biology of Nitric oxide. New York: Marcel Dekker, Inc.; 1999 p. 57-85.
Featherston WR, Rogers QR, Freedland RA. Relative importance of kidney and liver in synthesis of arginine by the rat. Am J Physiol 1973; 224: 127-9. DOI: https://doi.org/10.1152/ajplegacy.1973.224.1.127
Ryall J, Nguyen M, Bendayan M, Shore GC. Expression of nuclear genes encoding the urea cycle enzymes, carbamoyl-phosphate synthetase I and ornithine carbamoyl transferase, in rat liver and intestinal mucosa. Eur J Biochem 1985; 152: 287-92. http://dx.doi.org/10.1111/j.1432-1033.1985.tb09196.x DOI: https://doi.org/10.1111/j.1432-1033.1985.tb09196.x
Levillain O, Hus-Citharel A, Morel F, Bankir L. Localization of arginine synthesis along rat nephron. Am J Physiol 1990; 259: 916-23. DOI: https://doi.org/10.1152/ajprenal.1990.259.6.F916
Blachier F, M'Rabet-Touil H, Posho L, Darcy-Vrillon B, Duée PH. Intestinal arginine metabolism during development. Evidence for de novo synthesis of L-arginine in newborn pig enterocytes. Eur J Biochem 1993; 216: 109-17. http://dx.doi.org/10.1111/j.1432-1033.1993.tb18122.x DOI: https://doi.org/10.1111/j.1432-1033.1993.tb18122.x
Wu G, Knabe DA, Yan W, Flynn NE. Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am J Physiol 1995; 268: 334-42. DOI: https://doi.org/10.1152/ajpregu.1995.268.2.R334
Herzfeld A, Raper SM. Enzymes of ornithine metabolism in adult and developing rat intestine. Biochim Biophys Acta 1976; 428: 600-10. http://dx.doi.org/10.1016/0304-4165(76)90188-4 DOI: https://doi.org/10.1016/0304-4165(76)90188-4
Hurwitz R, Kretchmer N. Development of arginine-synthesizing enzymes in mouse intestine. Am J Physiol. 1986; 251: 103-10. DOI: https://doi.org/10.1152/ajpgi.1986.251.1.G103
Yu YM, Burke JF, Tompkins RG, Martin R, Young VR. Quantitative aspects of interorgan relationships among arginine and citrulline metabolism. Am J Physiol 1996; 271: 1098-109. DOI: https://doi.org/10.1152/ajpendo.1996.271.6.E1098
Morris SM Jr. Regulation of enzymes of urea and arginine synthesis. Annu Rev Nutr 1992; 12: 81-101. http://dx.doi.org/10.1146/annurev.nu.12.070192.000501 DOI: https://doi.org/10.1146/annurev.nu.12.070192.000501
Wu G, Bazer FW, Davis TA, et al. Arginine metabolism and nutrition in growth, health and disease. Amino Acids 2009; 37: 153-68. http://dx.doi.org/10.1007/s00726-008-0210-y DOI: https://doi.org/10.1007/s00726-008-0210-y
Jenkinson CP, Grody WW, Cederbaum SD. Comparative properties of arginases. Comp Biochem Physiol B Biochem Mol Biol 1996; 114: 107-32. http://dx.doi.org/10.1016/0305-0491(95)02138-8 DOI: https://doi.org/10.1016/0305-0491(95)02138-8
Malaisse WJ, Blachier F, Mourtada A, et al. Stimulus-secretion coupling of arginine-induced insulin release. Metabolism of L-arginine and L-ornithine in pancreatic islets. Biochim Biophys Acta 1989; 1013: 133-43. http://dx.doi.org/10.1016/0167-4889(89)90041-4 DOI: https://doi.org/10.1016/0167-4889(89)90041-4
Gotoh T, Sonoki T, Nagasaki A, Terada K, Takiguchi M, Mori M. Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. FEBS Lett 1996; 395: 119-22. http://dx.doi.org/10.1016/0014-5793(96)01015-0 DOI: https://doi.org/10.1016/0014-5793(96)01015-0
Vockley JG, Jenkinson CP, Shukla H, Kern RM, Grody WW, Cederbaum SD. Cloning and characterization of the human type II arginase gene. Genomics 1996; 38: 118-23. http://dx.doi.org/10.1006/geno.1996.0606 DOI: https://doi.org/10.1006/geno.1996.0606
Pegg AE, Wechter R, Pakala R, Bergeron RJ. Effect of N1,N12-bis(ethyl)spermine and related compounds on growth and polyamine acetylation, content, and excretion in human colon tumor cells. J Biol Chem 1989; 264: 11744-9. DOI: https://doi.org/10.1016/S0021-9258(18)80128-4
Sjöholm A. Role of polyamines in the regulation of proliferation and hormone production by insulin-secreting cells. Am J Physiol 1993; 264: 501-18. DOI: https://doi.org/10.1152/ajpcell.1993.264.3.C501
Ackermann JM, Pegg AE, McCloskey DE. Drugs affecting the cell cycle via actions on the polyamine metabolic pathway. Prog Cell Cycle Res 2003; 5: 461-8.
Stone JR, Marletta MA. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry 1996; 35: 1093-9. http://dx.doi.org/10.1021/bi9519718 DOI: https://doi.org/10.1021/bi9519718
Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43: 109-42.
Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001; 357: 593-615. http://dx.doi.org/10.1042/0264-6021:3570593 DOI: https://doi.org/10.1042/bj3570593
Stuehr DJ. Structure-function aspects in the nitric oxide synthases. Annu Rev Pharmacol Toxicol 1997; 37: 339-59. http://dx.doi.org/10.1146/annurev.pharmtox.37.1.339 DOI: https://doi.org/10.1146/annurev.pharmtox.37.1.339
Govers R, Oess S. To NO or not to NO: 'where?' is the question. Histol Histopathol 2004; 19: 585-605.
Lajoix AD, Reggio H, Chardès T, et al. A neuronal isoform of nitric oxide synthase expressed in pancreatic beta-cells controls insulin secretion. Diabetes 2001; 50: 1311-23. http://dx.doi.org/10.2337/diabetes.50.6.1311 DOI: https://doi.org/10.2337/diabetes.50.6.1311
Böger RH, Bode-Böger SM. The clinical pharmacology of L-arginine. Annu Rev Pharmacol Toxicol 2001; 41: 79-99. http://dx.doi.org/10.1146/annurev.pharmtox.41.1.79 DOI: https://doi.org/10.1146/annurev.pharmtox.41.1.79
Tsikas D, Böger RH, Sandmann J, Bode-Böger SM, Frölich JC. Endogenous nitric oxide synthase inhibitors are responsible for the L-arginine paradox. FEBS Lett 2000; 478: 1-3. http://dx.doi.org/10.1016/S0014-5793(00)01686-0 DOI: https://doi.org/10.1016/S0014-5793(00)01686-0
Förstermann U, Closs EI, Pollock JS, et al. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 1994; 23: 1121-31. http://dx.doi.org/10.1161/01.HYP.23.6.1121 DOI: https://doi.org/10.1161/01.HYP.23.6.1121
Böger RH. Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the "L-arginine paradox" and acts as a novel cardiovascular risk factor. J Nutr 2004; 134: 2842-7. DOI: https://doi.org/10.1093/jn/134.10.2842S
Joshi MS, Ferguson TB Jr, Johnson FK, Johnson RA, Parthasarathy S, Lancaster JR Jr. Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cells. Proc Natl Acad Sci U S A 2007; 104: 9982-7. http://dx.doi.org/10.1073/pnas.0506824104 DOI: https://doi.org/10.1073/pnas.0506824104
García-Cardeña G, Fan R, Stern DF, Liu J, Sessa WC. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem 1996; 271: 27237-40. http://dx.doi.org/10.1074/jbc.271.44.27237 DOI: https://doi.org/10.1074/jbc.271.44.27237
García-Cardeña G, Martasek P, Masters BS, et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J Biol Chem 1997; 272: 25437-40. http://dx.doi.org/10.1074/jbc.272.41.25437 DOI: https://doi.org/10.1074/jbc.272.41.25437
Atkinson MA, Bluestone JA, Eisenbarth GS, et al. How does type 1 diabetes develop?: the notion of homicide or β-cell suicide revisited. Diabetes 2011; 60: 1370-9. http://dx.doi.org/10.2337/db10-1797 DOI: https://doi.org/10.2337/db10-1797
Saltier AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799-806. http://dx.doi.org/10.1038/414799a DOI: https://doi.org/10.1038/414799a
Halban PA, German MS, Kahn SE, Weir GC. Current status of islet cell replacement and regeneration therapy. J Clin Endocrinol Metab 2010; 95: 1034-43. http://dx.doi.org/10.1210/jc.2009-1819 DOI: https://doi.org/10.1210/jc.2009-1819
Swenne I. Effects of aging on the regenerative capacity of the pancreatic B-cell of the rat. Diabetes 1983; 32: 14-9. http://dx.doi.org/10.2337/diabetes.32.1.14 DOI: https://doi.org/10.2337/diabetes.32.1.14
Bouwens L, Klöppel G. Islet cell neogenesis in the pancreas. Virchows Arch 1996; 427: 553-60. http://dx.doi.org/10.1007/BF00202885 DOI: https://doi.org/10.1007/BF00202885
Vasilijević A, Buzadžić B, Korać A, Petrović V, Janković A, Korać B. Beneficial effects of L-arginine nitric oxide-producing pathway in rats treated with alloxan. J Physiol 2007; 584: 921-33. http://dx.doi.org/10.1113/jphysiol.2007.140277 DOI: https://doi.org/10.1113/jphysiol.2007.140277
McKinnon CM, Docherty K. Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function. Diabetologia 2001; 44: 1203-14. http://dx.doi.org/10.1007/s001250100628 DOI: https://doi.org/10.1007/s001250100628
Gagliardino JJ, Del Zotto H, Massa L, Flores LE, Borelli MI. Pancreatic duodenal homeobox-1 and islet neogenesis-associated protein: a possible combined marker of activateable pancreatic cell precursors. J Endocrinol 2003; 177: 249-59. http://dx.doi.org/10.1677/joe.0.1770249 DOI: https://doi.org/10.1677/joe.0.1770249
De Haro-Hernández R, Cabrera-Muñoz L, Méndez JD. Regeneration of beta-cells and neogenesis from small ducts or acinar cells promote recovery of endocrine pancreatic function in alloxan-treated rats. Arch Med Res 2004; 35: 114-20. http://dx.doi.org/10.1016/j.arcmed.2003.10.001 DOI: https://doi.org/10.1016/j.arcmed.2003.10.001
Lardon J, Huyens N, Rooman I, Bouwens L. Exocrine cell transdifferentiation in dexamethasone-treated rat pancreas. Virchows Arch 2004; 444: 61-5. http://dx.doi.org/10.1007/s00428-003-0930-z DOI: https://doi.org/10.1007/s00428-003-0930-z
Okamoto H, Akiyama T, Nata K, et al. Reg (Regenerating gene) expression by PARP and NF-kB. Med Sci Monit 2003; 9: 50-60.
Kaneto H, Nakatani Y, Kawamori D, et al. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance. Int J Biochem Cell Biol 2005; 37: 1595-608. http://dx.doi.org/10.1016/j.biocel.2005.04.003 DOI: https://doi.org/10.1016/j.biocel.2005.04.003
Salil G, Nevin KG, Rajamohan T. Arginine-rich coconut kernel diet influences nitric oxide synthase activity in alloxan diabetic rats. J Sci Food Agric 2012; 92: 1903-8. http://dx.doi.org/10.1002/jsfa.5558 DOI: https://doi.org/10.1002/jsfa.5558
Méndez JD, Arreola MA. Effect of L-arginine on pancreatic arginase activity and polyamines in alloxan treated rats. Biochem Int 1992; 28: 569-75.
Méndez JD, De Haro Hernández R. L-arginine and polyamine administration protect β-cells against alloxan diabetogenic effect in Sprague-Dawley rats. Biomed Pharmacother 2005; 59: 283-9. http://dx.doi.org/10.1016/j.biopha.2005.05.006 DOI: https://doi.org/10.1016/j.biopha.2005.05.006
Adeghate E, Ponery AS, El-Sharkawy T, Parvez H. L-arginine stimulates insulin secretion from the pancreas of normal and diabetic rats. Amino Acids 2001; 21: 205-9. http://dx.doi.org/10.1007/s007260170028 DOI: https://doi.org/10.1007/s007260170028
Ishii M, Shimizu S, Watabe T, Kiuchi Y. Insulin Secretion in Response to L-Arginine under Decreasing Tetrahydrobiopterin Content. Pteridines 2008; 19: 93-100. DOI: https://doi.org/10.1515/pteridines.2008.19.1.93
Blachier F, Mourtada A, Sener A, Malaisse WJ. Stimulus-secretion coupling of arginine-induced insulin release. Uptake of metabolized and nonmetabolized cationic amino acids by pancreatic islets. Endocrinology 1989; 124: 134-41. http://dx.doi.org/10.1210/endo-124-1-134 DOI: https://doi.org/10.1210/endo-124-1-134
Newsholme P, Brennan L, Rubi B, Maechler P. New insights into amino acid metabolism, beta-cell function and diabetes. Clin Sci (Lond) 2005; 108: 185-94. http://dx.doi.org/10.1042/CS20040290 DOI: https://doi.org/10.1042/CS20040290
Jimenez-Feltstrom J, Lundquist I, Obermuller S, Salehi A. Insulin feedback actions: complex effects involving isoforms of islet nitric oxide synthase. Regul Pept 2004; 122: 109-18. http://dx.doi.org/10.1016/j.regpep.2004.06.004 DOI: https://doi.org/10.1016/j.regpep.2004.06.004
Laychock SG, Modica ME, Cavanaugh CT. L-arginine stimulates cyclic guanosine 3',5'-monophosphate formation in rat islets of Langerhans and RINm5F insulinoma cells: evidence for L-arginine:nitric oxide synthase. Endocrinology 1991; 129: 3043-52. http://dx.doi.org/10.1210/endo-129-6-3043 DOI: https://doi.org/10.1210/endo-129-6-3043
Panagiotidis G, Akesson B, Rydell EL, Lundquist I. Influence of nitric oxide synthase inhibition, nitric oxide and hydroperoxide on insulin release induced by various secretagogues. Br J Pharmacol 1995; 114: 289-96. http://dx.doi.org/10.1111/j.1476-5381.1995.tb13225.x DOI: https://doi.org/10.1111/j.1476-5381.1995.tb13225.x
Henningsson R, Alm P, Lindström E, Lundquist I. Chronic blockade of NO synthase paradoxically increases islet NO production and modulates islet hormone release. Am J Physiol Endocrinol Metab 2000; 279: 95-107. DOI: https://doi.org/10.1152/ajpendo.2000.279.1.E95
Rizzo MA, Piston DW. Regulation of beta cell glucokinase by S-nitrosylation and association with nitric oxide synthase. J Cell Biol 2003; 161: 243-8. http://dx.doi.org/10.1083/jcb.200301063 DOI: https://doi.org/10.1083/jcb.200301063
Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J 1994; 298: 249-58. DOI: https://doi.org/10.1042/bj2980249
Krause MS, McClenaghan NH, Flatt PR, de Bittencourt PI, Murphy C, Newsholme P. L-arginine is essential for pancreatic β-cell functional integrity, metabolism and defense from inflammatory challenge. J Endocrinol 2011; 211: 87-97. http://dx.doi.org/10.1530/JOE-11-0236 DOI: https://doi.org/10.1530/JOE-11-0236
Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 1996; 20: 463-6. http://dx.doi.org/10.1016/0891-5849(96)02051-5 DOI: https://doi.org/10.1016/0891-5849(96)02051-5
Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997; 46: 1733-42. http://dx.doi.org/10.2337/diabetes.46.11.1733 DOI: https://doi.org/10.2337/diabetes.46.11.1733
Rocić B, Vucić M, Knezević-Cuća J, Radica A, Pavlić-Renar I, Profozić V, Metelko Z. Total plasma antioxidants in first-degree relatives of patients with insulin-dependent diabetes. Exp Clin Endocrinol Diabetes 1997; 105: 213-7. http://dx.doi.org/10.1055/s-0029-1211754 DOI: https://doi.org/10.1055/s-0029-1211754
Santini SA, Marra G, Giardina B, et al. Defective plasma antioxidant defenses and enhanced susceptibility to lipid peroxidation in uncomplicated IDDM. Diabetes 1997; 46: 1853-8. http://dx.doi.org/10.2337/diabetes.46.11.1853 DOI: https://doi.org/10.2337/diabetes.46.11.1853
Cimbaljević B, Vasilijević A, Cimbaljević S, et al. Interrelationship of antioxidative status, lipid peroxidation, and lipid profile in insulin-dependent and non-insulin-dependent diabetic patients. Can J Physiol Pharmacol 2007; 85: 997-1003. http://dx.doi.org/10.1139/Y07-088 DOI: https://doi.org/10.1139/Y07-088
Newsholme P, Haber EP, Hirabara SM, et al. Diabetes associated cell stress and dysfunction: role of mitochondrial and non-mitochondrial ROS production and activity. J Physiol 2007; 583: 9-24. http://dx.doi.org/10.1113/jphysiol.2007.135871 DOI: https://doi.org/10.1113/jphysiol.2007.135871
Martens GA, Vervoort A, Van de Casteele M, et al. Specificity in beta cell expression of L-3-hydroxyacyl-CoA dehydrogenase, short chain, and potential role in down-regulating insulin release. J Biol Chem 2007; 282:21134-44. http://dx.doi.org/10.1074/jbc.M700083200 DOI: https://doi.org/10.1074/jbc.M700083200
Jun T, Sakinis A, Wennmalm A. The insulin secretory response to intravenous glucose in the rat is independent of NO formation. Acta Physiol Scand 1995; 155: 61-5. http://dx.doi.org/10.1111/j.1748-1716.1995.tb09948.x DOI: https://doi.org/10.1111/j.1748-1716.1995.tb09948.x
Patel AG, Toyama MT, Nguyen TN, et al. Role of nitric oxide in the relationship of pancreatic blood flow and exocrine secretion in cats. Gastroenterology 1995; 108: 1215-20. http://dx.doi.org/10.1016/0016-5085(95)90222-8 DOI: https://doi.org/10.1016/0016-5085(95)90222-8
Bult H, Boeckxstaens GE, Pelckmans PA, Jordaens FH, Van Maercke YM, Herman AG. Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 1990; 345: 346-7. http://dx.doi.org/10.1038/345346a0 DOI: https://doi.org/10.1038/345346a0
Yago MD, Mañas M, Ember Z, Singh J. Nitric oxide and the pancreas: morphological base and role in the control of the exocrine pancreatic secretion. Mol Cell Biochem 2001; 219: 107-20. http://dx.doi.org/10.1023/A:1010834611480 DOI: https://doi.org/10.1023/A:1010834611480
DiMagno MJ, Hao Y, Tsunoda Y, Williams JA, Owyang C. Secretagogue-stimulated pancreatic secretion is differentially regulated by constitutive NOS isoforms in mice. Am J Physiol Gastrointest Liver Physiol 2004; 286: 428-36. http://dx.doi.org/10.1152/ajpgi.00368.2003 DOI: https://doi.org/10.1152/ajpgi.00368.2003
Hammarstedt A, Graham TE, Kahn BB. Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells. Diabetol Metab Syndr 2012; 4: 42. http://dx.doi.org/10.1186/1758-5996-4-42 DOI: https://doi.org/10.1186/1758-5996-4-42
Fu WJ, Haynes TE, Kohli R, et al. Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 2005; 135: 714-21. DOI: https://doi.org/10.1093/jn/135.4.714
Wu G, Lee MJ, Fried SK. The arginine-NO pathway modulates lipolysis in adipose tissues of obese human subjects. FASAB J 2007; 21: A1052. DOI: https://doi.org/10.1096/fasebj.21.6.A1052-b
Jobgen W, Fu WJ, Gao H, et al. High fat feeding and dietary L-arginine supplementation differentially regulate gene expression in rat white adipose tissue. Amino Acids 2009; 37: 187-98. http://dx.doi.org/10.1007/s00726-009-0246-7 DOI: https://doi.org/10.1007/s00726-009-0246-7
Lucotti P, Setola E, Monti LD, et al. Beneficial effects of a long-term oral L-arginine treatment added to a hypocaloric diet and exercise training program in obese, insulin-resistant type 2 diabetic patients. Am J Physiol Endocrinol Metab 2006; 291: 906-12. http://dx.doi.org/10.1152/ajpendo.00002.2006 DOI: https://doi.org/10.1152/ajpendo.00002.2006
Janković A, Buzadžić B, Korać A, Petrović V, Vasilijević A, Korać B. Antioxidative defense organization in retroperitoneal white adipose tissue during acclimation to cold-The involvement of L-arginine/NO pathway. J Therm Biol 2009; 34: 358-65. http://dx.doi.org/10.1016/j.jtherbio.2009.06.007 DOI: https://doi.org/10.1016/j.jtherbio.2009.06.007
Monti LD, Galluccio E, Lucotti P, et al. Beneficial role of L-arginine in cardiac matrix remodelling in insulin resistant rats. Eur J Clin Invest 2008; 38: 849-56. http://dx.doi.org/10.1111/j.1365-2362.2008.02027.x DOI: https://doi.org/10.1111/j.1365-2362.2008.02027.x
Saleh AI, Abdel Maksoud SM, El-Maraghy SA, Gad MZ. Protective effect of L-arginine in experimentally induced myocardial ischemia: comparison with aspirin. J Cardiovasc Pharmacol Ther 2011; 16: 53-62. http://dx.doi.org/10.1177/1074248410378506 DOI: https://doi.org/10.1177/1074248410378506
Miguez I, Marino G, Rodriguez B, Taboada C. Effects of dietary L-arginine supplementation on serum lipids and intestinal enzyme activities in diabetic rats. J Physiol Biochem 2004; 60: 31-7. http://dx.doi.org/10.1007/BF03168218 DOI: https://doi.org/10.1007/BF03168218
Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 2006; 17: 571-88. http://dx.doi.org/10.1016/j.jnutbio.2005.12.001 DOI: https://doi.org/10.1016/j.jnutbio.2005.12.001
McKnight JR, Satterfield MC, Jobgen WS, et al. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 2010; 39: 349-57. http://dx.doi.org/10.1007/s00726-010-0598-z DOI: https://doi.org/10.1007/s00726-010-0598-z
Tan B, Yin Y, Liu Z, et al. Dietary L-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 2011; 22: 441-5. http://dx.doi.org/10.1016/j.jnutbio.2010.03.012 DOI: https://doi.org/10.1016/j.jnutbio.2010.03.012
Chessler SD, Fujimoto WY, Shofer JB, Boyko EJ, Weigle DS. Increased plasma leptin levels are associated with fat accumulation in Japanese Americans. Diabetes 1998; 47: 239-43. http://dx.doi.org/10.2337/diabetes.47.2.239 DOI: https://doi.org/10.2337/diabetes.47.2.239
Stingl H, Raffesberg W, Nowotny P, Waldhäusl W, Roden M. Reduction of plasma leptin concentrations by arginine but not lipid infusion in humans. Obes Res 2002; 10: 1111-9. http://dx.doi.org/10.1038/oby.2002.151 DOI: https://doi.org/10.1038/oby.2002.151
Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature (London) 2002; 420: 333-6. http://dx.doi.org/10.1038/nature01137 DOI: https://doi.org/10.1038/nature01137
Silha JV, Krsek M, Skrha JV, Sucharda P, Nyomba BL, Murphy LJ. Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance. Eur J Endocrinol 2003; 149: 331-5. http://dx.doi.org/10.1530/eje.0.1490331 DOI: https://doi.org/10.1530/eje.0.1490331
Smith SR, Bai F, Charbonneau C, Janderova L, Argyropoulos G. A promoter genotype and oxidative stress potentially link resistin to human insulin resistance. Diabetes 2003; 52: 1611-8. http://dx.doi.org/10.2337/diabetes.52.7.1611 DOI: https://doi.org/10.2337/diabetes.52.7.1611
Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84: 277-359. http://dx.doi.org/10.1152/physrev.00015.2003 DOI: https://doi.org/10.1152/physrev.00015.2003
Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509-17. http://dx.doi.org/10.1056/NEJMoa0810780 DOI: https://doi.org/10.1056/NEJMoa0810780
Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518-25. http://dx.doi.org/10.1056/NEJMoa0808949 DOI: https://doi.org/10.1056/NEJMoa0808949
van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500-8. http://dx.doi.org/10.1056/NEJMoa0808718 DOI: https://doi.org/10.1056/NEJMoa0808718
Vasilijević A, Vojčić Lj, Dinulović I, et al. Expression pattern of thermogenesis-related factors in interscapular brown adipose tissue of alloxan-treated rats: beneficial effect of L-arginine. Nitric Oxide 2010; 23: 42-50. http://dx.doi.org/10.1016/j.niox.2010.04.001 DOI: https://doi.org/10.1016/j.niox.2010.04.001
Jobgen W, Meininger CJ, Jobgen SC, et al. Dietary L-arginine supplementation reduces white fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 2009; 139: 230-7. http://dx.doi.org/10.3945/jn.108.096362 DOI: https://doi.org/10.3945/jn.108.096362
Petrović V, Korać A, Buzadžić B, Korać B. The effects of L-arginine and L-NAME supplementation on redox-regulation and thermogenesis in interscapular brown adipose tissue. J Exp Biol 2005; 208: 4263-71. http://dx.doi.org/10.1242/jeb.01895 DOI: https://doi.org/10.1242/jeb.01895
Korać A, Buzadžić B, Petrović V, et al. The role of nitric oxide in remodeling of capillary network in rat interscapular brown adipose tissue after long-term cold acclimation. Histol Histopathol 2008; 23: 441-50.
Korać A, Buzadžić B, Petrović V, Vasilijević A, Janković A, Korać B. Leptin immunoexpression and innervation in rat interscapular brown adipose tissue of cold-acclimated rats: the effects of L-arginine and L-NAME. Folia Histochem Cytobiol 2008; 46: 103-9. http://dx.doi.org/10.2478/v10042-008-0015-6 DOI: https://doi.org/10.2478/v10042-008-0015-6
Petrović V, Korać A, Buzadžić B, et al. Nitric oxide regulates mitochondrial re-modelling in interscapular brown adipose tissue: ultrastructural and morphometric-stereologic studies. J Microsc 2008; 232: 542-8. http://dx.doi.org/10.1111/j.1365-2818.2008.02132.x DOI: https://doi.org/10.1111/j.1365-2818.2008.02132.x
Petrović V, Buzadžić B, Korać A, Vasilijević A, Janković A, Korać B. NO modulates the molecular basis of rat interscapular brown adipose tissue thermogenesis. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152: 147-59. http://dx.doi.org/10.1016/j.cbpc.2010.03.008 DOI: https://doi.org/10.1016/j.cbpc.2010.03.008
Vučetić M, Otašević V, Korać A, et al. Interscapular brown adipose tissue metabolic reprogramming during cold acclimation: Interplay of HIF-1α and AMPKα. Biochim Biophys Acta 2011; 1810: 1252-61. DOI: https://doi.org/10.1016/j.bbagen.2011.09.007
Khedara A, Goto T, Morishima M, Kayashita J, Kato N. Elevated body fat in rats by the dietary nitric oxide synthase inhibitor, L-N omega nitroarginine. Biosci Biotechnol Biochem 1999; 63: 698-702. http://dx.doi.org/10.1271/bbb.63.698 DOI: https://doi.org/10.1271/bbb.63.698
Piatti PM, Monti LD, Valsecchi G, et al. Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care 2001; 24: 875-80. http://dx.doi.org/10.2337/diacare.24.5.875 DOI: https://doi.org/10.2337/diacare.24.5.875
Bogdanski P, Suliburska J, Grabanska K, et al. Effect of 3-month L-arginine supplementation on insulin resistance and tumor necrosis factor activity in patients with visceral obesity. Eur Rev Med Pharmacol Sci 2012; 16: 816-23.
Baron AD, Steinberg H, Brechtel G, Johnson A. Skeletal muscle blood flow independently modulates insulin-mediated glucose uptake. Am J Physiol 1994; 266: 248-53. DOI: https://doi.org/10.1152/ajpendo.1994.266.2.E248
Baron AD, Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G. Insulin-mediated skeletal muscle vasodilation contributes to both insulin sensitivity and responsiveness in lean humans. J Clin Invest 1995; 96: 786-92. http://dx.doi.org/10.1172/JCI118124 DOI: https://doi.org/10.1172/JCI118124
Petrie JR, Ueda S, Webb DJ, Elliott HL, Connell JM. Endothelial nitric oxide production and insulin sensitivity. A physiological link with implications for pathogenesis of cardiovascular disease. Circulation 1996; 93: 1331-3. http://dx.doi.org/10.1161/01.CIR.93.7.1331 DOI: https://doi.org/10.1161/01.CIR.93.7.1331
Kobzik L, Stringer B, Balligand JL, Reid MB, Stamler JS. Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochem Biophys Res Commun 1995; 211: 375-81. http://dx.doi.org/10.1006/bbrc.1995.1824 DOI: https://doi.org/10.1006/bbrc.1995.1824
Bates TE, Loesch A, Burnstock G, Clark JB. Mitochondrial nitric oxide synthase: a ubiquitous regulator of oxidative phosphorylation? Biochem Biophys Res Comm 1996; 218: 40-4. http://dx.doi.org/10.1006/bbrc.1996.0008 DOI: https://doi.org/10.1006/bbrc.1996.0008
Ribiere C, Jaubert AM, Gaudiot N, et al. White adipose tissue nitric oxide synthase: a potential source for NO production. Biochem Biophys Res Commun 1996; 222: 706-12. http://dx.doi.org/10.1006/bbrc.1996.0824 DOI: https://doi.org/10.1006/bbrc.1996.0824
Young ME, Leighton B. Evidence for altered sensitivity of the nitric oxide/cGMP signalling cascade in insulin-resistant skeletal muscle. Biochem J 1998; 329: 73-9. DOI: https://doi.org/10.1042/bj3290073
Balon TW, Nadler JL. Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 1997; 82: 359-63. DOI: https://doi.org/10.1152/jappl.1997.82.1.359
Roy D, Perreault M, Marette A. Insulin stimulation of glucose uptake in skeletal muscles and adipose tissues in vivo is NO dependent. Am J Physiol 1998; 274: 692-9. DOI: https://doi.org/10.1152/ajpendo.1998.274.4.E692
Marliss EB, Chevalier S, Gougeon R, et al. Elevations of plasma methylarginines in obesity and ageing are related to insulin sensitivity and rates of protein turnover. Diabetologia 2006; 49: 351-9. http://dx.doi.org/10.1007/s00125-005-0066-6 DOI: https://doi.org/10.1007/s00125-005-0066-6
Higaki Y, Hirshman MF, Fujii N, Goodyear LJ. Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes 2001; 50: 241-7. http://dx.doi.org/10.2337/diabetes.50.2.241 DOI: https://doi.org/10.2337/diabetes.50.2.241
Tanaka T, Nakatani K, Morioka K, et al. Nitric oxide stimulates glucose transport through insulin-independent GLUT4 translocation in 3T3-L1 adipocytes. Eur J Endocrinol 2003; 149: 61-7. http://dx.doi.org/10.1530/eje.0.1490061 DOI: https://doi.org/10.1530/eje.0.1490061
Douen AG, Ramlal T, Rastogi S, et al. Exercise induces recruitment of the "insulin-responsive glucose transporter". Evidence for distinct intracellular insulin- and exercise-recruitable transporter pools in skeletal muscle. J Biol Chem 1990; 265: 13427-30. DOI: https://doi.org/10.1016/S0021-9258(18)77362-6
Coderre L, Kandror KV, Vallega G, Pilch PF. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J Biol Chem 1995; 270: 27584-8. http://dx.doi.org/10.1074/jbc.270.46.27584 DOI: https://doi.org/10.1074/jbc.270.46.27584
McConell GK, Huynh NN, Lee-Young RS, Canny BJ, Wadley GD. L-Arginine infusion increases glucose clearance during prolonged exercise in humans. Am J Physiol Endocrinol Metab 2006; 290: 60-6. http://dx.doi.org/10.1152/ajpendo.00263.2005 DOI: https://doi.org/10.1152/ajpendo.00263.2005
Young ME, Radda GK, Leighton B. Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro. Biochem J 1997; 322: 223-8. DOI: https://doi.org/10.1042/bj3220223
Young ME, Leighton B. Fuel oxidation in skeletal muscle is increased by nitric oxide/cGMP-evidence for involvement of cGMP-dependent protein kinase. FEBS Lett 1998; 424: 79-83. http://dx.doi.org/10.1016/S0014-5793(98)00143-4 DOI: https://doi.org/10.1016/S0014-5793(98)00143-4
Salil G, Nithya R, Nevin KG, Rajamohan T. Dietary coconut kernel protein beneficially modulates NFκB and RAGE expression in streptozotocin induced diabetes in rats. J Food Sci Technol 2012; http://dx.doi.org/10.1007/s13197-012-0729-5 DOI: https://doi.org/10.1007/s13197-012-0729-5
Monti LD, Valsecchi G, Costa S, et al. Effects of endothelin-1 and nitric oxide on glucokinase activity in isolated rat hepatocytes. Metabolism 2000; 49: 73-80. http://dx.doi.org/10.1016/S0026-0495(00)90763-7 DOI: https://doi.org/10.1016/S0026-0495(00)90763-7
Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006; 116: 1776-83. http://dx.doi.org/10.1172/JCI29044 DOI: https://doi.org/10.1172/JCI29044
Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 1997; 273: 1107-12. DOI: https://doi.org/10.1152/ajpendo.1997.273.6.E1107
Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ. Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 1998; 47: 1369-73. http://dx.doi.org/10.2337/diabetes.47.8.1369 DOI: https://doi.org/10.2337/diabetes.47.8.1369
Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW. 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 1999; 48: 1667-71. http://dx.doi.org/10.2337/diabetes.48.8.1667 DOI: https://doi.org/10.2337/diabetes.48.8.1667
Zheng D, MacLean PS, Pohnert SC, et al. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J Appl Physiol 2001; 91: 1073-83. DOI: https://doi.org/10.1152/jappl.2001.91.3.1073
de Castro Barbosa T, Jiang LQ, Zierath JR, Nunes MT. L-Arginine enhances glucose and lipid metabolism in rat L6 myotubes via the NO/ c-GMP pathway. Metabolism 2012; http://dx.doi.org/10.1016/j.metabol.2012.06.011 DOI: https://doi.org/10.1016/j.metabol.2012.06.011
Winder WW, Wilson HA, Hardie DG, et al. Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A. J Appl Physiol 1997; 82: 219-25. DOI: https://doi.org/10.1152/jappl.1997.82.1.219
Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes 2000; 49: 896-903. http://dx.doi.org/10.2337/diabetes.49.6.896 DOI: https://doi.org/10.2337/diabetes.49.6.896
Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108: 1167-74. DOI: https://doi.org/10.1172/JCI13505
Zou MH, Kirkpatrick SS, Davis BJ, et al. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem 2004; 279: 43940-51. http://dx.doi.org/10.1074/jbc.M404421200 DOI: https://doi.org/10.1074/jbc.M404421200
Linden KC, Wadley GD, Garnham AP, McConell GK. Effect of L-arginine infusion on glucose disposal during exercise in humans. Med Sci Sports Exerc 2011; 43: 1626-34. http://dx.doi.org/10.1249/MSS.0b013e318212a317 DOI: https://doi.org/10.1249/MSS.0b013e318212a317
Jobgen WJ. PhD Dissertation. Texas A&M University; 2007. Dietary L-arginine Supplementation Reduces Fat Mass in Diet-Induced Obese Rats.
Newsholme P, Keane D, Welters HJ, Morgan NG. Life and death decisions of the pancreatic beta-cell: the role of fatty acids. Clin Sci (Lond) 2007; 112: 27-42. http://dx.doi.org/10.1042/CS20060115 DOI: https://doi.org/10.1042/CS20060115
Nyblom HK, Sargsyan E, Bergsten P. AMP-activated protein kinase agonist dose dependently improves function and reduces apoptosis in glucotoxic beta-cells without changing triglyceride levels. J Mol Endocrinol 2008; 41: 187-94. http://dx.doi.org/10.1677/JME-08-0006 DOI: https://doi.org/10.1677/JME-08-0006
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .