Efficacy of Modified Eggs and Chick Muscles on Oxidative Stress of Type-2 Diabetes Mellitus Induced Male Wistar Rats

Authors

  • Kshetrimayum Birla Singh Department of Zoology, Pachhunga University College, Mizoram University, Aizawl-796001, India
  • Satish Kumar Taneja Department of Zoology, Panjab University, Chandigarh-160014, India

DOI:

https://doi.org/10.6000/1929-5634.2013.02.03.3

Keywords:

Zinc, modified eggs, chick muscles, oxidative stress, type-II diabetes mellitus

Abstract

A modified poultry egg (Indian Patent Application No. 2264/Del-2005) and chick muscle enriched with optimum minerals, vitamin E and omega-3 fatty acid were developed and its efficacy was studied on oxidative stress of Type-2 diabetes mellitus induced male wistar rats. In this study, two groups of rats were fed on semi-synthetic diet containing 20 mg Zn/kg (control, group-I) and 80 mg Zn/kg (group-II) diet respectively for a period of 6 months. The study revealed that the gain in body weight increased in rats in Zn concentration dependent manner. The urine examined on weekly basis showed glucosuria in group-II on week 8 and thereafter. The blood lipid profile displayed a significant rise in serum glucose, total lipids, cholesterol, triglycerides, LDL-cholesterol, VLDL-cholesterol whereas HDL-cholesterol showed a reduction in their levels in group-II rats than their control counter parts. They displayed higher lipid peroxidation products and activities of superoxide dismutase, catalase, glutathione–s -transferase, glutathione reductase, glutathione (reduced) and glucose-6-phosphate dehydrogenase were significantly lowered and revealed a higher Zn concentration and lower Cu, Mg and Mn both in liver and kidney. On day 90, the male rats in group-II after the establishment of type-2 diabetes mellitus, were divided in to two groups- group-IIA and group-IIB. Feeding on these eggs and chick muscles mixed diet in these groups of rats, all the abnormalities were restored and a considerable reduction in lipid peroxidation products and a significant increased in the activities of enzymes per se with reversal of Zn, Cu, Mg and Mn levels closer to the control group were recorded. The present data suggest that these modified egg and chick muscle are effective in ameliorating the oxidative stress in type-2 diabetes mellitus induced male rats.

References

Zimmet PZ, McCarty DJ, Courten MP. The global epidemiology of non insulin dependent diabetes mellitus and the metabolic syndrome. J Diabe Compl 1997; 11: 60-8. http://dx.doi.org/10.1016/S1056-8727(96)00090-6 DOI: https://doi.org/10.1016/S1056-8727(96)00090-6

Somogyi A, Pusxtai P, Prech J, et al. The hypothetical connection of diabetes mellitus and free radical reactions with atherosclerosis. Orv Hetil 1994; 135: 1815-8.

Noberasco C, Odetti P, Boemi D, et al. Malondialdehyde (MDA) level in diabetes subjects. Relationship with blood glucose and glycosylated haemoglobin. Biomed and Pharma 1991; 45: 193-6. http://dx.doi.org/10.1016/0753-3322(91)90107-5 DOI: https://doi.org/10.1016/0753-3322(91)90107-5

Bellomom G, Maggi E, Poli M, et al. Autoantibodies against oxidatively modified low density lipoproptens in NIDDM. Diabetes 1995; 44: 60-6. http://dx.doi.org/10.2337/diab.44.1.60 DOI: https://doi.org/10.2337/diabetes.44.1.60

Kawamura N, Okawara T, Suzuki K, et al. Increased glycated Cu, Zn- superoxide dismutase levels in erythrocytes of patients with IDDM. J Clin Endocrin Metab 1992; 746: 1352-4. http://dx.doi.org/10.1210/jc.74.6.1352 DOI: https://doi.org/10.1210/jc.74.6.1352

Mustafa A, David EL. Diabetes, oxidative stress and physical exercise. J Sport Sc Med 2002; 1: 1-14.

Pomp D, Oberbauer A M, Murray JD. Growth and body composition of OMT-la- OGH transgenic male mice with differing periodsof transgenic activation. J Anim Sci 1992; 70(1): 198-1. http://dx.doi.org/10.1007/BF01979918

Pomp D, Oberbauer AM, Murray JD. Development of obesity following inactivation of a growth transgene in mice. Transgenic Res 1996; 5: 13-3. DOI: https://doi.org/10.1007/BF01979918

Taneja SK, Mandal R, Girhotra S. Long term excessive Zn supplementation promotes metabolic Syndrome-X in wistar rats fed sucrose and fat rich semi-synthetic diet. Ind J Exp Bio 2006; 44: 705-8. http://dx.doi.org/10.1007/s12011-007-8035-1

Taneja SK, Mandal R. Assessment of minerals in obesity related diseases in the Chandigarh (India) population. Biol Trace Elem Res 2008; 121: 106-2. DOI: https://doi.org/10.1007/s12011-007-8035-1

Ohtsuka A Ohtani T, Horiguchi H, Kojima H, Hayashi K. Vitamin E reduces glucocorticoid-induced growth inhibition and lipid peroxidation in rats. J Nutr Sci Vitaminol 1998; 44: 237-7. http://dx.doi.org/10.3177/jnsv.44.237 DOI: https://doi.org/10.3177/jnsv.44.237

Goodfellow J, Bellamy MF, Ramsey MW, Jones CJH, Lewis MJ. Dietary supplementations of marine omega-3 fatty acids improve systemic large artery endothelial function in subjects with hypercholesterolemia. J Am Coll Cardiol 2000; 35(2): 265-0. http://dx.doi.org/10.1016/S0735-1097(99)00548-3 DOI: https://doi.org/10.1016/S0735-1097(99)00548-3

Umerson J. Serum cholesterol and HDL-cholesterol levels as accociated with copper and zinc intake in physically active and sedentary elderly men and women. Adv Exp Med Biol 1989; 258: 171-1. DOI: https://doi.org/10.1007/978-1-4613-0537-8_15

Balon TW, Gu JJ, Tokuyama Y, Jasman AP and Nadler JJ. Magenesium supplementation reduces development of diabetes in a rat model of spontaneous NIDDM. Am J Physiol 1995; 269: 745-2. DOI: https://doi.org/10.1152/ajpendo.1995.269.4.E745

Everson GJ, Shrader RE. Abnormal glucose tolerance in manganese deficient guinea pigs. J Nutr 1968; 94: 89-4. DOI: https://doi.org/10.1093/jn/94.1.89

Folch JLM, Less M, Solane- Staneley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957; 226: 497-9. DOI: https://doi.org/10.1016/S0021-9258(18)64849-5

Chiamori N, Henry RJ. Study of the ferric chloride method for the determination of total cholesterol and cholesterol ester. Am J Clin Pathol 1995; 31(4): 305-9. DOI: https://doi.org/10.1093/ajcp/31.4.305

Gottfried SP, Rosenberg B. Improved manual spectrophotometric procedure for the determination of the serum triglycerides. Clin Chem 1973; 19: 1077-8. DOI: https://doi.org/10.1093/clinchem/19.9.1077

Frings CS, Dunn RT. A calorimetric method for determination of total serum lipids based on sulphophosphovanillin reaction. Am J Clin Path 1970; 53: 89-4. DOI: https://doi.org/10.1093/ajcp/53.1.89

Lowry OH, Rosebrough NJ, Farr, AL, Randall RJ. Protein measurement with the folin phenol reagent. J Bio Chem 1951; 193: 265-5. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Heatly NG. The distribution of glycogen in the regions of amphibian gastrula with method for micro determination of glycogen. Biochem J 1935; 29: 68-2. DOI: https://doi.org/10.1042/bj0292568

Taylor SL, Lamden MP, Tappel AL. Sensitive fluorometric method for tissue tocopherol analysis. Lipids 1976; 11: 530-8. http://dx.doi.org/10.1007/BF02532898 DOI: https://doi.org/10.1007/BF02532898

Barker D, Fitzpatrick MP, Dierenfield ES. Nutrient composition of selected whole invertebrates. Zoo Biol 1998; 17: 123-9. http://dx.doi.org/10.1002/(SICI)1098-2361(1998)17:2<123::AID-ZOO7>3.0.CO;2-B DOI: https://doi.org/10.1002/(SICI)1098-2361(1998)17:2<123::AID-ZOO7>3.0.CO;2-B

Bindal MP, Wadhwa BK. Detection of adulteration in ghee with vegetable oils using GLC based on a marker fatty acid. Indian J Dairy Sci 1997; 50: 129-3.

Oberleas D, Herland BF. Phytate content of foods: effect on dietary zinc bioavailability. J Ame Diet Ass 1981; 79: 433- 6. DOI: https://doi.org/10.1016/S0002-8223(21)39390-7

Orgebin-crist MC, Freeman M, Barney GH. Sperm formation in Zn-deficient rats. Annals Bio-chem Biophys 1971; 11: 547-8. http://dx.doi.org/10.1051/rnd:19710403 DOI: https://doi.org/10.1051/rnd:19710403

National Research Council. Recommended dietary allowance. 10th ed. National Academy Press, Washington, D.C. 1989.

Koo SI, Turk DE. Effect of Zn deficiency on intestinal transport of triglycerides in rats. J Nutr 1997; 107: 909-9. DOI: https://doi.org/10.1093/jn/107.5.909

Faure P, Roussel A, Coudray C, Richard MJ, Halimi J, Favier S. Zinc and insulin sensitivity. Bio Trace Elem Res 1992; 32: 305-0. http://dx.doi.org/10.1007/BF02784615 DOI: https://doi.org/10.1007/BF02784615

Trinder P. Determination of glucose in blood using glucose oxidase with alternative glucose acceptor. Annual Clin Biochem 1969; 6: 24-25. DOI: https://doi.org/10.1177/000456326900600108

Roeschlau P, Bernt E, Gurber WA. Enzymatic determination of total cholesterol in serum. J Clin Chem Clin Bioch 1974; 1974: 232-6.

McGowan MW, Artiss JD, Stranberg DR, Zak BA. Peroxide coupled method for colorimetric determination of serum triglycerides. Clin Chem 1983; 29: 438-2. DOI: https://doi.org/10.1093/clinchem/29.3.538

Burstein M, Schonick HR, Morfin R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipids Res 1970; 11: 583-5. DOI: https://doi.org/10.1016/S0022-2275(20)42943-8

Friedewald WT, Levy RI, Fredrickson RS. Estimation of concentration of LDL-cholesterol in plasma without use of preparative ultracentrifuge. Clin Chem 1972; 18(6): 499-2. DOI: https://doi.org/10.1093/clinchem/18.6.499

Beuge JA, Aust SD. Microsomal lipid peroxidation. Method Enzyme 1978; 52: 302-0. http://dx.doi.org/10.1016/S0076-6879(78)52032-6 DOI: https://doi.org/10.1016/S0076-6879(78)52032-6

Ellman GL. Tissue sulphydryl Groups. Arch Bioch Bioph 1959; 82: 70-7. http://dx.doi.org/10.1016/0003-9861(59)90090-6 DOI: https://doi.org/10.1016/0003-9861(59)90090-6

Nishikimi M, Rao NA, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen. Bioch Biophy Res Comm 1972; 46(2): 849-9. http://dx.doi.org/10.1016/S0006-291X(72)80218-3 DOI: https://doi.org/10.1016/S0006-291X(72)80218-3

Aebi AE. “Catalase,” In: Bergnmeyer HV, Ed., Methods of Enzymatic Analysis, 3rd ed. Aca-demic Press, New York 1983; Vol. 3: pp. 273-86.

Habig W, Pabst, MJ, Jackboy WB. Glutathione-s-transfrase. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974; 249: 7130-9. DOI: https://doi.org/10.1016/S0021-9258(19)42083-8

Horn HD. “Glutathione Reductase,” In: Berg-Meyer HV, Ed. Methods of Enzymatic Analysis, Academic Press, New York 1971; pp. 875-1. DOI: https://doi.org/10.1016/B978-0-12-395630-9.50156-0

Lohr GW, Waller HD. Glucose-6-phosphate dehydrogenase, In: Bergmeyer HV, Ed. Methods of enzymatic analysis; Academic Press, New York 1963; p. 744. DOI: https://doi.org/10.1016/B978-0-12-395630-9.50135-3

Chen MD, Lin PY, Cheng V, Lin WH. Zinc supplementation aggravates body fat accumulation in genetically obese mice and dietary obese mice. Biol Trace Elem Res 1996; 52: 125-2. http://dx.doi.org/10.1007/BF02789454 DOI: https://doi.org/10.1007/BF02789454

Allen, KGD, Klevay LM. Copper on antioxidant nutrient for cardiovascular health. Curr Opin Lipidol 1994; 5: 22-8. http://dx.doi.org/10.1097/00041433-199402000-00005 DOI: https://doi.org/10.1097/00041433-199402000-00005

Davis, GK, Mertz W. Copper trace elements in human and animal nutrition. In Murtz W. Eds. Trace Orlando. Academic Press 1: 301-6. DOI: https://doi.org/10.1016/B978-0-08-092468-7.50014-4

Corica F, Allegra A, Benedetto AD, Giacobbe MS, Romano G, Cucinotta D. Effect of oral magnesium supplementation on lipid concentration in patients with non-insulin dependent diabetes mellitus. Magnesium Res 1994; 7: 43-7.

Anderson RA. Chromium metabolism and its role in disease progress in man. Clin Physio Biochem 1986; 4: 31-1.

Shell DR, Lapolla A, Odetti P, Fogarty J, Monnier VM. Pentosidine formation in skin correlates with severity of complications in individuals with long standing IDDM. Diabetes 1992; 41: 675-6. DOI: https://doi.org/10.2337/diabetes.41.10.1286

Altomare F, Vendemiale G, Chicco D, Procacci V, Cielli F. Increased lipid peroxidation in type-2 poorly control diabetic patients. Diabetes Metab 1992; 18(4): 264-1.

Penckofer S, Schwertz D, Florczak K. Oxidative stress and cardiovascular disease in type-2 diabetes: the role of antioxidants and pro-oxidants. J Cardiovasc Nurs 2002; 16(2): 68-5. http://dx.doi.org/10.1097/00005082-200201000-00007 DOI: https://doi.org/10.1097/00005082-200201000-00007

Kasapoglu M, Ozben T. Alteration of antioxidant enzymes and oxidative stress makers in aging. Exp Gerontol 36: 209-0. http://dx.doi.org/10.1016/S0531-5565(00)00198-4 DOI: https://doi.org/10.1016/S0531-5565(00)00198-4

Touyz RM. Oxidative stress and vascular damage in hypertensions. Curr Hypertens Rep 2000; 2: 98-5. http://dx.doi.org/10.1007/s11906-000-0066-3 DOI: https://doi.org/10.1007/s11906-000-0066-3

Kinalski M, Seldziewski A, Telejko B, et al, Lipid peroxidation and scavenging enzymes activities in streptozoctocin induced diabetes. Acta Diabetol 2000; 37: 179-3. http://dx.doi.org/10.1007/s005920070002 DOI: https://doi.org/10.1007/s005920070002

Muhammad A, Mudassir AK, Abdus SK. Naturally occurring antioxidant vitamin levels in patients with type -II diabetes mellitus. J Ayub Med Coll Abbottabad 2004; 15(1): 1-6.

Ugochukkwu NH, Babady NE, Cobourne M, et al. The effect of Gongronema latifolium extracts on serum lipid profile and oxidative stress in hepatocytes of diabetic rats. J Biosci 2003; 28: 1-5. http://dx.doi.org/10.1007/BF02970124 DOI: https://doi.org/10.1007/BF02970124

Sailaja YR, Baskar R, Saralakumari D. The antioxidant status during malnutrition of reticulocytes to erythrocytes in type-2 diabetics. Free Radic Biol Med 2003; 35: 133-9. http://dx.doi.org/10.1016/S0891-5849(03)00071-6 DOI: https://doi.org/10.1016/S0891-5849(03)00071-6

Anderson RA, Roussel, AM, Zouari N, Mahjoub S, Matheau JM, Kerkeni A. Potential antioxidant effect of zinc and chromium supplementation in people with diabetes mellitus. J Am Coll Nutr 2001; 20: 212-5. http://dx.doi.org/10.1080/07315724.2001.10719034 DOI: https://doi.org/10.1080/07315724.2001.10719034

Sindhu RK, Koo JR, Robert CK, Vazioori ND. Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes: response to insulin and antioxidant therapies. Clin Exp Hyperten 2004; 26: 45-3. http://dx.doi.org/10.1081/CEH-120027330 DOI: https://doi.org/10.1081/CEH-120027330

Mooradian AD, Failla M, Hoogwerf B, Maryniuk M, Wylie-Roset J. Selected vitamins and minerals in diabetes. Diabetes Care 1994; 5: 464-8. DOI: https://doi.org/10.2337/diacare.17.5.464

Strain JJ. Disturbance of the micronutrients and antioxidant status in diabetes. Proc Nutr Soc 1991; 50: 591-4. http://dx.doi.org/10.1079/PNS19910073 DOI: https://doi.org/10.1079/PNS19910073

Ruiz C, Alegria A, Barbera R, Farre R Lagarda MJ. Selenium, zinc and copper in plasma of patients with type-I diabetes mellitus in different metabolic control states. J Trace Elem Biol 1998; 12: 91-5. http://dx.doi.org/10.1016/S0946-672X(98)80031-X DOI: https://doi.org/10.1016/S0946-672X(98)80031-X

Walter RM, Uriu- Hare JY, Olin KL, Oster MH, Anawalt BD, Critchfield JW, Keen CL. Copper, zinc, manganese, and magnesium complications of diabetes mellitus. Diabetes Care 1991; 14: 1051-6. http://dx.doi.org/10.2337/diacare.14.11.1050 DOI: https://doi.org/10.2337/diacare.14.11.1050

Paynter DI. The role of dietary copper, manganese, selenium and vitamin-E in lipid peroxidation in tissue of rats. Biol Trace Elem Res1980; 2: 121-5. http://dx.doi.org/10.1007/BF02798591 DOI: https://doi.org/10.1007/BF02798591

Olin KL, Walter RM, Keen CL. Copper deficiency affects selenoglutathione peroxidase and selenodeiodinase activities and antioxidant defences in weanling rats. Am J Clin Nutr 1994; 59: 654-8. DOI: https://doi.org/10.1093/ajcn/59.3.654

Rahbani-Nobar, ME, Rahimi-Pour A, Rahbani-Nobar M, Adi-Beig F, Mirhashemi SM. Total antioxidant capacity, superoxide dismutase and glutathione peroxidase in diabetic patients. Med J Islamic Acad Sci 1999; 12: 2012-4.

Downloads

Published

2013-09-30

How to Cite

Singh, K. B., & Taneja, S. K. (2013). Efficacy of Modified Eggs and Chick Muscles on Oxidative Stress of Type-2 Diabetes Mellitus Induced Male Wistar Rats. Journal of Nutritional Therapeutics, 2(3), 154–162. https://doi.org/10.6000/1929-5634.2013.02.03.3

Issue

Section

Articles