Comparison of Fundamental Frequency between Monolingual and Bilingual Children with a Cochlear Implant
DOI:
https://doi.org/10.6000/2292-2598.2019.07.03.7Keywords:
Cochlear Implant, Fundamental frequency, Children, Bilingual, Monolingual.Abstract
Background and Objective: Cochlear implantation influences acoustical and perceptual characteristics of voice in CI children. However, there is limited knowledge of the type and amount of influence of multilingualism on these characteristics of voice in CI children. The present study aimed to comparatively investigate fundamental frequency (F0) between two groups of bilinguals and monolinguals in children who recently underwent CI.
Methods: This was a cross-sectional comparative study conducted on Persian-Arabic bilingual children (n=25) and monolingual Persian children (n=25) matched in age and gender. All children had congenitally profound hearing loss and received a unilateral CI before the age of two years. The participants were asked to sustain the vowel /a/ and vowel /e/ on a single breath for 4 seconds, and the F0 value was measured using Praat software. For each participant, the F0 was measured three times and then averaged as mean F0.
Results: Our findings indicated no significant differences in terms of mean F0 for the vowels of /a/ and /e/ in monolingual and bilingual groups (p>0.05).
Conclusion: Bilingual Persian-Arab children with CI display vocal characteristics that are largely comparable with those of their monolingual Persian peers with CI.
References
Ostojić S, Djoković S, Dimić N, Mikić B. Cochlear implant--speech and language development in deaf and hard of hearing children following implantation. Vojnosanit Pregl [Internet]. 2011; 68(4): 349-52. https://doi.org/10.2298/VSP1104349O DOI: https://doi.org/10.2298/VSP1104349O
Saki N, Yadollahpour A, Moniri S, Karimi M, Bayat A, Abshirini H, et al. Investigating the Impacts of Cochlear Implantation on the Happiness and Self-Esteem of Mothers of Children with Severe Hearing Loss. Int J Ment Health Addict 2016. https://doi.org/10.1007/s11469-016-9672-4 DOI: https://doi.org/10.1007/s11469-016-9672-4
May-Mederake B. Early intervention and assessment of speech and language development in young children with cochlear implants. Int J Pediatr Otorhinolaryngol [Internet] 2012; 76(7): 939-46. https://doi.org/10.1016/j.ijporl.2012.02.051 DOI: https://doi.org/10.1016/j.ijporl.2012.02.051
Holler T, Campisi P, Allegro J, Chadha NK, Harrison RV, Papsin B, et al. Abnormal Voicing in Children Using Cochlear Implants. Arch Otolaryngol Neck Surg [Internet] 2010; 136(1): 17. https://doi.org/10.1001/archoto.2009.194 DOI: https://doi.org/10.1001/archoto.2009.194
Nikakhlagh S, Saki N, Karimi M, Mirahmadi S, Rostami MR. Evaluation of Loudness Perception Performance in Cochlear Implant Users. Biomed Pharmacol J [Internet] 2015; 8(March Spl Edition): 79-83. https://doi.org/10.13005/bpj/561 DOI: https://doi.org/10.13005/bpj/561
Roche JP, Hansen MR. On the Horizon: Cochlear Implant Technology [Internet]. Vol. 48, Otolaryngologic Clinics of North America 2015; pp. 1097-116. https://doi.org/10.1016/j.otc.2015.07.009 DOI: https://doi.org/10.1016/j.otc.2015.07.009
Gifford RH, Shallop JK, Peterson AM. Speech Recognition Materials and Ceiling Effects: Considerations for Cochlear Implant Programs. Audiol Neurotol [Internet] 2008; 13(3): 193-205. https://doi.org/10.1159/000113510 DOI: https://doi.org/10.1159/000113510
Gstoettner W, Kiefer J, Baumgartner W-D, Pok S, Peters S, Adunka O. Hearing preservation in cochlear implantation for electric acoustic stimulation. Acta Otolaryngol [Internet] 2004; 124(4): 348-52. https://doi.org/10.1080/00016480410016432 DOI: https://doi.org/10.1080/00016480410016432
Houston DM, Pisoni DB, Kirk KI, Ying EA, Miyamoto RT. Speech perception skills of deaf infants following cochlear implantation: a first report. Int J Pediatr Otorhinolaryngol [Internet] 2003; 67(5): 479-95. https://doi.org/10.1016/S0165-5876(03)00005-3 DOI: https://doi.org/10.1016/S0165-5876(03)00005-3
Soleymani M, Nikakhlagh S, Hafezi G, Albokordi M, Saki N. Comparison of communication and social skills abilities of children with hearing impairment after cochlear implantation and parental expectations: A study conducted in Khuzestan cochlear implant center. Int J Pharm Technol [Internet] 2016; 8(3): 14791-802.
Rezaei M, Emadi M, Zamani P, Farahani F, Lotfi G. Speech Intelligibility in Persian Hearing Impaired Children with Cochlear Implants and Hearing Aids. J Audiol Otol [Internet] 2017; 21(1): 57-60. https://doi.org/10.7874/jao.2017.21.1.57 DOI: https://doi.org/10.7874/jao.2017.21.1.57
Souza LBR de, Bevilacqua MC, Brasolotto AG, Coelho AC. Cochlear implanted children present vocal parameters within normal standards. Int J Pediatr Otorhinolaryngol [Internet] 2012; 76(8): 1180-3. https://doi.org/10.1016/j.ijporl.2012.04.029 DOI: https://doi.org/10.1016/j.ijporl.2012.04.029
Knight K, Ducasse S, Coetzee A, van der Linde J, Louw A. The effect of age of cochlear implantation on vocal characteristics in children. South African J Commun Disord = Die Suid-Afrikaanse Tydskr vir Kommun [Internet] 2016; 63(1). https://doi.org/10.4102/sajcd.v63i1.142 DOI: https://doi.org/10.4102/sajcd.v63i1.142
Yost WA. Pitch perception. Atten Percept Psychophys [Internet] 2009; 71(8): 1701-15. https://doi.org/10.3758/APP.71.8.1701 DOI: https://doi.org/10.3758/APP.71.8.1701
Gelfand SA. Hearing : an introduction to psychological and physiological acoustics [Internet]. Sixth edit. New York: CRC Press 2017; pp. 218-230. DOI: https://doi.org/10.1201/9781315154718
Oxenham AJ. Pitch perception and auditory stream segregation: implications for hearing loss and cochlear implants. Trends Amplif [Internet] 2008; 12(4): 316-31. https://doi.org/10.1177/1084713808325881 DOI: https://doi.org/10.1177/1084713808325881
Gaudrain E, Başkent D. Discrimination of Voice Pitch and Vocal-Tract Length in Cochlear Implant Users. Ear Hear [Internet] 2018; 39(2): 226-37. https://doi.org/10.1097/AUD.0000000000000480 DOI: https://doi.org/10.1097/AUD.0000000000000480
Hong RS, Turner CW. Sequential stream segregation using temporal periodicity cues in cochlear implant recipients. J Acoust Soc Am [Internet] 2009; 126(1): 291-9. https://doi.org/10.1121/1.3140592 DOI: https://doi.org/10.1121/1.3140592
Bayat A, Farhadi M, Pourbakht A, Sadjedi H, Emamdjomeh H, Kamali M, et al. A comparison of auditory perception in hearing-impaired and normal-hearing listeners: an auditory scene analysis study. Iran Red Crescent Med J [Internet] 2013; 15(11): e9477. https://doi.org/10.5812/ircmj.9477 DOI: https://doi.org/10.5812/ircmj.9477
Krizman J, Slater J, Skoe E, Marian V, Kraus N. Neural processing of speech in children is influenced by extent of bilingual experience. Neurosci Lett [Internet] 2015; 585: 48-53. https://doi.org/10.1016/j.neulet.2014.11.011 DOI: https://doi.org/10.1016/j.neulet.2014.11.011
Green T, Faulkner A, Rosen S, Macherey O. Enhancement of temporal periodicity cues in cochlear implants: Effects on prosodic perception and vowel identification. J Acoust Soc Am [Internet] 2005; 118(1): 375-85. https://doi.org/10.1121/1.1925827 DOI: https://doi.org/10.1121/1.1925827
Geurts L, Wouters J. Coding of the fundamental frequency in continuous interleaved sampling processors for cochlear implants. J Acoust Soc Am [Internet] 2001; 109(2): 713-26. https://doi.org/10.1121/1.1340650 DOI: https://doi.org/10.1121/1.1340650
Laneau J, Wouters J, Moonen M. Relative contributions of temporal and place pitch cues to fundamental frequency discrimination in cochlear implantees. J Acoust Soc Am [Internet] 2004; 116(6): 3606-19. https://doi.org/10.1121/1.1823311 DOI: https://doi.org/10.1121/1.1823311
Ng ML, Hsueh G, Sam Leung C-S. Voice pitch characteristics of Cantonese and English produced by Cantonese-English bilingual children. Int J Speech Lang Pathol [Internet] 2010; 12(3): 230-6. https://doi.org/10.3109/17549501003721080 DOI: https://doi.org/10.3109/17549501003721080
Natour YS, Wingate JM. Fundamental Frequency Characteristics of Jordanian Arabic Speakers. J Voice [Internet] 2009; 23(5): 560-6. https://doi.org/10.1016/j.jvoice.2008.01.005 DOI: https://doi.org/10.1016/j.jvoice.2008.01.005
Xue SA, Hao GJP, Mayo R. Volumetric measurements of vocal tracts for male speakers from different races. Clin Linguist Phon [Internet] 2006; 20(9): 691-702. https://doi.org/10.1080/02699200500297716 DOI: https://doi.org/10.1080/02699200500297716
Xue SA, Neeley R, Hagstrom F, Hao J. Speaking F0 characteristics of elderly Euro-American and African-American speakers: Building a clinical comparative platform. Clin Linguist Phonetics [Internet] 2001; 15(3): 245-52. https://doi.org/10.1080/026992001300054856 DOI: https://doi.org/10.1080/026992001300054856
Altenberg EP, Ferrand CT. Fundamental Frequency in Monolingual English, Bilingual English/Russian, and Bilingual English/Cantonese Young Adult Women. J Voice [Internet] 2006; 20(1): 89-96. https://doi.org/10.1016/j.jvoice.2005.01.005 DOI: https://doi.org/10.1016/j.jvoice.2005.01.005
Saki N, Bayat A, Hoseinabadi R, Nikakhlagh S, Karimi M, Dashti R. Universal newborn hearing screening in southwestern Iran. Int J Pediatr Otorhinolaryngol [Internet] 2017; 97: 89-92. https://doi.org/10.1016/j.ijporl.2017.03.038 DOI: https://doi.org/10.1016/j.ijporl.2017.03.038
General Assembly of the World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Coll Dent [Internet] 2014; 81(3): 14-8.
Bunta F, Douglas M. The Effects of Dual-Language Support on the Language Skills of Bilingual Children With Hearing Loss Who Use Listening Devices Relative to Their Monolingual Peers. Lang Speech Hear Serv Sch [Internet] 2013; 44(3): 281-90. https://doi.org/10.1044/0161-1461(2013/12-0073) DOI: https://doi.org/10.1044/0161-1461(2013/12-0073)
Krizman J, Marian V, Shook A, Skoe E, Kraus N. Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proc Natl Acad Sci [Internet] 2012; 109(20): 7877-81. https://doi.org/10.1073/pnas.1201575109 DOI: https://doi.org/10.1073/pnas.1201575109
Dolson M. The Pitch of Speech as a Function of Linguistic Community. Music Percept An Interdiscip J [Internet] 1994; 11(3): 321-31. https://doi.org/10.2307/40285626 DOI: https://doi.org/10.2307/40285626
Llanos F, Dmitrieva O, Shultz A, Francis AL. Auditory enhancement and second language experience in Spanish and English weighting of secondary voicing cues. J Acoust Soc Am [Internet] 2013; 134(3): 2213-24. https://doi.org/10.1121/1.4817845 DOI: https://doi.org/10.1121/1.4817845
Ohala JJ. An Ethological Perspective on Common Cross-Language Utilization of F0 of Voice. Phonetica [Internet] 1984; 41(1): 1-16. https://doi.org/10.1159/000261706 DOI: https://doi.org/10.1159/000261706
Chatterjee M, Zion DJ, Deroche ML, Burianek BA, Limb CJ, Goren AP, et al. Voice emotion recognition by cochlear-implanted children and their normally-hearing peers. Hear Res [Internet] 2015; 322: 151-62. https://doi.org/10.1016/j.heares.2014.10.003 DOI: https://doi.org/10.1016/j.heares.2014.10.003
He A, Deroche ML, Doong J, Jiradejvong P, Limb CJ. Mandarin Tone Identification in Cochlear Implant Users Using Exaggerated Pitch Contours. Otol Neurotol [Internet] 2016; 37(4): 1. https://doi.org/10.1097/MAO.0000000000000980 DOI: https://doi.org/10.1097/MAO.0000000000000980
Stickney GS, Assmann PF, Chang J, Zeng F-G. Effects of cochlear implant processing and fundamental frequency on the intelligibility of competing sentences. J Acoust Soc Am [Internet] 2007; 122(2): 1069-78. https://doi.org/10.1121/1.2750159 DOI: https://doi.org/10.1121/1.2750159