In Vitro Screening for Antioxidant and Anticholinesterase Effects of Uvaria littoralis Blume.: A Nootropic Phytotherapeutic Remedy
DOI:
https://doi.org/10.6000/2292-2598.2017.05.02.3Keywords:
Oxidative stress, Antioxidant potentiality, Anticholinesterase activity, Uvaria littoralis, Alzheimer's diseaseAbstract
Background: Oxidative stress is strongly linked in the development of numerous chronic and degenerative disorders. Medicinal plants with antioxidant and anticholinesterase activities exert a key role for the management of oxidative stress related disorders mainly Alzheimer's disease (AD). Therefore the purpose of this study was to assess antioxidant potentiality and anticholinesterase inhibitory activity of crude methanolic extract (CME), petroleum ether fraction (PEF), chloroform fraction (CLF), ethyl acetate fraction (EAF) and aqueous fraction (AQF) of Uvaria littoralis (U. littoralis) leaves.
Methods: The antioxidant compounds namely total flavonoids contents (TFCs) and total proanthocyanidins contents (TPACCs) were determined for quantities constituent’s characterization. Antioxidant capacity of U. littoralis leaves were estimated by the iron reducing power (IRPA), 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and nitric oxide (NO) radical scavenging capacity. Anticholinesterase effects were estimated for acetylcholinesterase (AChE) and butyrylcholinestrase (BChE) activity.
Results: The EAF of U. littoralis leaves showed the highest TFCs as compared to CLF, CME, PEF and AQF. TPACCs were also found highest in EAF. The highest absorbance for IRPA was found in EAF (2.220 nm) with respect to CME and other fractions at the highest concentration. The EAF showed best DPPH and NO radical scavenging activity with IC50 values of 31.63 and 55.47 μg/mL, respectively with regard to CME and remaining fractions. The PEF represents highest AChE inhibitory activity with IC50 values of 35.19 μg/mL and CLF showed highest BChE inhibitory activity with IC50 values of 32.49 μg/mL.
Conclusions: The findings of the current study demonstrate the presence of antioxidant phytochemicals, likewise, turns out antioxidant and anticholinesterase potentiality of U. littoralis leaves which could be a prestigious candidate for the treatment of neurodegenerative diseases especially AD.
References
Uddin MS, Mamun AA, Khanum S, Begum Y, Alam MS. Analysis of in vitro antioxidant activity of Caryota urens L. leaves: A traditional natural remedy. J Coast Life Med 2016; 4: 483-9. https://doi.org/10.12980/jclm.4.2016J6-65 DOI: https://doi.org/10.12980/jclm.4.2016J6-65
Uddin MS, Nasrullah M, Hossain MS, Rahman MM, Sarwar MS, Amran MS, el al. Evaluation of nootropic activity of Persicaria flaccida on cognitive performance, brain antioxidant markers and acetylcholinesterase activity in rats: Implication for the management of Alzheimer’s disease. American J Psychi Neuroscience 2016; 4(2): 26-37. https://doi.org/10.11648/j.ajpn.20160402.12 DOI: https://doi.org/10.11648/j.ajpn.20160402.12
Uddin MS, Mamun AA, Hossain MS, Akter F, Iqbal MA, Asaduzzaman M. Exploring the effect of Phyllanthus emblica L. on cognitive performance, brain antioxidant markers and acetylcholinesterase activity in rats: Promising natural gift for the mitigation of Alzheimer's disease. Ann Neurosci 2016; 23(4): 218-229. https://doi.org/10.1159/000449482 DOI: https://doi.org/10.1159/000449482
Uddin MS, Al Mamun A, Hossain MS, Ashaduzzaman M, Noor MA, Hossain MS, Uddin MJ, Sarker J, Asaduzzaman M. Neuroprotective effect of Phyllanthus acidus L. on learning and memory impairment in a scopolamine-induced animal model of dementia and oxidative stress: Natural wonder for regulating the development and progression of Alzheimer’s disease. Adv Alzheimer Dis 2016; 5(2): 53-72.
http://dx.doi.org/10.4236/aad.2016.52005 DOI: https://doi.org/10.4236/aad.2016.52005
Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Molecular Asp Medicine 2011; 32(4): 234-46. DOI: https://doi.org/10.1016/j.mam.2011.10.006
Uddin MS, Haque A, Mamun AA, Iqbal MA, Kabir MT. Searching the linkage between high fat diet and Alzheimer’s disease: A debatable proof stand for ketogenic diet to alleviate symptoms of Alzheimer’s patient with APOE ε4 allele. J Neurol Neurophysiol 2016; 7(5): 1-2.
http://dx.doi.org/10.4172/2155-9562.1000397 DOI: https://doi.org/10.4172/2155-9562.1000397
Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cel Bioch 2010; 345(1-2): 91-104. DOI: https://doi.org/10.1007/s11010-010-0563-x
Zhang M, Schmitt-Ulms G, Sato C, Xi Z, Zhang Y, Zhou Y, St George-Hyslop P, Rogaeva E. Drug repositioning for Alzheimer’s disease based on systematic ‘omics’ data mining. PloS one 2016; 11(12): e0168812. DOI: https://doi.org/10.1371/journal.pone.0168812
Uddin MS, Asaduzzaman M, Mamun AA, Iqbal MA, Wahid F. Neuroprotective activity of Asparagus racemosus Linn. against ethanol-induced cognitive impairment and oxidative stress in rats brain: Auspicious for controlling the risk of Alzheimer’s disease. J Alzheimers Dis Parkinsonism 2016; 6(4): 1-2.
http://dx.doi.org/10.4172/2161-0460.1000245 DOI: https://doi.org/10.4172/2161-0460.1000245
Forchetti CM. Treating patients with moderate to severe Alzheimer’s disease: Implications of recent pharmacologic studies. Prim Care Companion J Clin Psychiatry 2015; 7(4): 155-161. DOI: https://doi.org/10.4088/PCC.v07n0403
Čolović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Cur Neuropharma 2013; 11(3): 315-335. DOI: https://doi.org/10.2174/1570159X11311030006
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition J 2015; 15: 71. DOI: https://doi.org/10.1186/s12937-016-0186-5
Das N, Islam ME, Jahan N, et al. Antioxidant activities of ethanol extracts and fractions of Crescentia cujete leaves and stem bark and the involvement of phenolic compounds. BMC Comp Alt Med 2014; 14: 45. DOI: https://doi.org/10.1186/1472-6882-14-45
Kahl R, Kappus H. Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. Z Lebensm Unters Forsch 1993; 196(4): 329-38. DOI: https://doi.org/10.1007/BF01197931
Kessler PJ, Bos MM, Daza SS, Kop A, Willemse LP, Pitopang R, Gradstein SR. Checklist of woody plants of Sulawesi, Indonesia. Blumea. Supplement 2002; 14(1): 1-60. http://floramalesiana.org/doc/kessler2002_sulawesi.pdf
da Silva Almeida JR, Lúcio AS, Barbosa-Filho JM, de Fátima Agra M, da Silva MS, da Cunha EV, et al., Alkaloids and a new cinnamate derivative from Duguetia gardneriana. Biochemical Sys Eco 2007; 35(7): 456-8. DOI: https://doi.org/10.1016/j.bse.2006.12.011
Pardhasaradhi BV, Reddy M, Ali AM, Kumari AL, Khar A. Differential cytotoxic effects of Annona squamosa seed extracts on human tumour cell lines: Role of reactive oxygen species and glutathione. J Biosciences 2005; 30(2): 237-44. DOI: https://doi.org/10.1007/BF02703704
Sadik G, Islam R, Rahman MM, Khondkar P, Rashid MA, Sarker SD. Antimicrobial and cytotoxic constituents of Loranthus globosus. Fitoterapia 2003; 74(3): 308-11. DOI: https://doi.org/10.1016/S0367-326X(03)00041-8
Ordoñez AAL, Gomez JG, Vattuone MA, Isla MI. Antioxidant activities of Sechium edule (Jacq.) Swart extracts. Food Chem 2006; 97: 452-458. DOI: https://doi.org/10.1016/j.foodchem.2005.05.024
Sun JS, Tsuang YH, Chen IJ, Huang WC, Hang YS, Lu FJ. An ultra-weak chemiluminescence study on oxidative stress in rabbits following acute thermal injury. Burns 1998; 24(3): 225-31. DOI: https://doi.org/10.1016/S0305-4179(97)00115-0
Oyaizu M. Studies on products of browning reaction-antioxidative activities of products of browning reaction prepared from glucosamine. Japanese J Nutr 1986; 44 (6): 307-315. DOI: https://doi.org/10.5264/eiyogakuzashi.44.307
Choi HY, Jhun EJ, Lim BO, Chung IM, Kyung SH, Park DK. Application of flow injection-chemiluminescence to the study of radical scavenging activity in plants. Phytotherapy Res 2000; 14(4): 250-3. DOI: https://doi.org/10.1002/1099-1573(200006)14:4<250::AID-PTR587>3.0.CO;2-J
Garrat DC. The Quantitative analysis of drugs. London: Chapman and Hall Ltd.; 1964. DOI: https://doi.org/10.1007/978-1-4613-3380-7_1
Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholine-sterase activity. Biochemical Pharmaco 1961; 7(2): 88-95. DOI: https://doi.org/10.1016/0006-2952(61)90145-9
Uddin MS, Mamun AA, Sarwar MS, Chaity NH, Haque A, Akter N, Amran MS. Medicine that causes memory loss: Risk of neurocognitive disorders. Int Neuropsych Dis J 2016; 8(1): 1-18.
http://dx.doi.org/10.9734/INDJ/2016/26317 DOI: https://doi.org/10.9734/INDJ/2016/26317
Nelson PT, Alafuzoff I, Bigio EH, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: A review of the literature. J Neuro Exp Neur 2012; 71(5): 362-381. DOI: https://doi.org/10.1097/NEN.0b013e31825018f7
Mamun AA, Uddin MS, Wahid MF, Iqbal MA, Rahman MM. Neurodefensive effect of Olea europaea L. in alloxan-induced cognitive dysfunction and brain tissue oxidative stress in mice: Incredible natural nootropic. J Neurology Neurosci 2016; 7(S3): 1-9. DOI: https://doi.org/10.21767/2171-6625.1000126
Balmus IM, Ciobica A, Antioch I, Dobrin R, Timofte D. Oxidative Stress implications in the affective disorders: Main biomarkers, animal models relevance, genetic perspectives, and antioxidant approaches. Oxi Med Cellular Lon 2016; 2016: 1-25. DOI: https://doi.org/10.1155/2016/3975101
Grossberg GT. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on. Cur Ther Re, Cli Exp 2003; 64(4): 216-235. DOI: https://doi.org/10.1016/S0011-393X(03)00059-6
Murray AP, Faraoni MB, Castro MJ, Alza NP, Cavallaro V. Natural AChE Inhibitors from plants and their Contribution to Alzheimer’s disease therapy. Current Neuropharma 2013; 11(4): 388-413. DOI: https://doi.org/10.2174/1570159X11311040004
Oliveira RI, Guimarães Al, Paula A, Oliveira LA, Ribeiro A, Lucio SS, et al. Phenolic quantification and antioxidant activity of Anaxagorea Dolichocarpa and Duguetia Chrysocarpa (Annonaceae). Int J Pharma Bio Sciences 2011; 3(4): 368-379.
Bayard V, Chamorro F, Motta J, Hollenberg NK. Does flavanol intake influence mortality from nitric oxide-dependent processes? Ischemic heart disease, stroke, diabetes mellitus, and cancer in Panama. Int J Med Sci 2007; 4(1): 53. DOI: https://doi.org/10.7150/ijms.4.53
Gang DR. Biological activity of phytochemicals. New York: Springer; 2011. DOI: https://doi.org/10.1007/978-1-4419-7299-6
Feng Y, Wang X. Antioxidant therapies for Alzheimer's disease. Oxi Med Cel Lon 2012; 2012: 1-5. DOI: https://doi.org/10.1155/2012/472932
Alves-Amaral G, Pires-Oliveira M, Andrade-Lopes AL, Chiavegatti T, Godinho RO. Gender-related differences in circadian rhythm of rat plasma acetyl-and butyrylcholinesterase: Effects of sex hormone withdrawal. Chemico-Bio Int 2010; 186(1): 9-15. DOI: https://doi.org/10.1016/j.cbi.2010.04.002
Vijayapandia P, Annabathina V, SivaNagaSrikanth B, Manjunath V, Boggavarapu P, RajendraPrasad K, Kumarappan CT. In vitro anticholinergic and antihistaminic activities of Acorus calamus Linn. Leaves extracts. Afr J Trad, Com Alt Med 2013; 10(1): 95-101. DOI: https://doi.org/10.4314/ajtcam.v10i1.13
Suganthy N, Pandian SK, Devi KP. Cholinesterase inhibitory effects of Rhizophora lamarckii, Avicennia officinalis, Sesuvium portulacastrum and Suaeda monica: Mangroves inhabiting an Indian coastal area (Vellar Estuary). J Enzyme Inhib Med Chem 2009; 24(3): 702-7. DOI: https://doi.org/10.1080/14756360802334719
Singh S. Antioxidants as a preventive therapeutic option for age related neurodegenerative diseases. Therapeutic Tar Neu Dise 2015; 2: e592.
Gourigari TR, Lepakshi BM, Kamsala RV. Evaluation of anticholinergic, antidiabetic and antioxidant activity of leaf extracts of Ochna Obtusata Dc using in vitro assays. Int J Pharm Pharmace Sci 2016; 8(6): 82-7.
Kuate D, Etoundi BC, Soukontoua YB, Ngondi JL, Oben JE. Comparative study of the antioxidant, free radical scavenging activity and human LDL oxidation inhibition of three extracts from seeds of a Cameroonian spice, Xylopia parviflora (A. Rich.) Benth. (Annonaceae). Int J Biomed Pharm Sci 2011; 5: 18-30.
Mathew M, Subramanian S. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS One 2014; 9(1): e86804. DOI: https://doi.org/10.1371/journal.pone.0086804
Uddin MS, Mamun AA, Iqbal MA, Islam A, Hossain MF, Khanum S, Rashid M. Analyzing nootropic effect of Phyllanthus reticulatus Poir. on cognitive functions, brain antioxidant enzymes and acetylcholinesterase activity against aluminium-induced Alzheimer's model in rats: Applicable for controlling the risk factors of Alzheimer's disease. Adv Alzheimer Dis 2016; 5(3): 87-102.
http://dx.doi.org/10.4236/aad.2016.53007 DOI: https://doi.org/10.4236/aad.2016.53007