Number Sense in Siblings of Children with Mathematical Learning Disabilities: A Longitudinal Study
DOI:
https://doi.org/10.6000/2292-2598.2013.01.01.8Keywords:
Mathematical learning disabilities, number sense, siblings, number line estimation, Arabic numbers, number words, counting, logical thinking, arithmeticAbstract
Number sense, counting and logical thinking were assessed in 14 siblings of children with Mathematical Learning Disabilities (MLD) and in 41 age matched children without family members with MLD. The children were tested in kindergarten and followed up in grade 1. A 0-100 number line estimation paradigm with three formats (Arabic digits, dots and number) was used as a measure of number sense. Results reveal that siblings of children with MLD are less proficient in number line placements compared to non-siblings, with both groups having a logarithmic representation in kindergarten and grade 1. Siblings also differ from non siblings on procedural and conceptual counting knowledge and logical thinking in kindergarten. In addition, our findings suggest that nnumber line estimation in kindergarten is especially predictive for untimed procedural calculation performances in grade 1, whereas procedural counting knowledge is related to timed fact retrieval skills in grade 1. Our findings also reveal that MLD had a familial aggregation. Clinical siblings especially differ from non-clinical siblings on the estimation with Arabic numbers (in kindergarten and grade 1) and number words (in grade 1), pointing to the fact that especially symbolic number line estimation tasks on a 0-100 scale can be used as screeners for MLD. Implications for the understanding and diagnosis of MLD are discussed.
References
Barbaresi WJ, Katusic SK, Colligan RC, et al. Learning disorder: Incidence in a population-based birth cohort (1976-82, Rochester, Minn). Ambulatory Pediatrics 2005; 5(5): 281-89. http://dx.doi.org/10.1367/A04-209R.1 DOI: https://doi.org/10.1367/A04-209R.1
Shalev RS, Manor O, Kerem B, Ayali M, Navah B, Friedlander Y, Gross-Tsur V. Developmental dyscalculia is a familial learning dysability. J Learn Disabilit 2001; 39: 59-65. http://dx.doi.org/10.1177/002221940103400105 DOI: https://doi.org/10.1177/002221940103400105
Geary DC, Hoard MK, Byrd-Craven J, Nugent L, Numtee C. Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Develop 2007; 78: 1343-59. http://dx.doi.org/10.1111/j.1467-8624.2007.01069.x DOI: https://doi.org/10.1111/j.1467-8624.2007.01069.x
Butterworth B. The mathematical brain. London: MacMillan; 1999.
Stock P, Desoete A, Roeyers H. Detecting children with arithmetic disabilities from kindergarten: Evidence from a three year longitudinal study on the role of preparatory arithmetic abilities. J Learn Disabilit 2010; 43: 250-68. http://dx.doi.org/10.1177/0022219409345011 DOI: https://doi.org/10.1177/0022219409345011
Dowker AD. Individual differences in arithmetic. Implications for psychology, neuroscience and education. New York: Psychology Press 2005. http://dx.doi.org/10.4324/9780203324899 DOI: https://doi.org/10.4324/9780203324899
Nunes T, Bryant P, Evans D, Bell D, Gardner A, Gardner A, Carraher J. The contribution of logical reasoning to the learning of mathematics in primary school. Br J Develop Psychol 2006; 00: 1-21. DOI: https://doi.org/10.1348/026151006X153127
Desoete A, Stock P, Schepens A, Baeyens D, Roeyers H. Classification, seriation, and counting in Grades 1, 2, and 3 as two year longitudinal predictors for low achieving in numerical facility and arithmetical achievement. J Psychoeducat Assessm 2009; 27: 252-64. http://dx.doi.org/10.1177/0734282908330588 DOI: https://doi.org/10.1177/0734282908330588
Dehaene S. Précis of the number sense. Mind Language 2001; 16: 16-36. http://dx.doi.org/10.1111/1468-0017.00154 DOI: https://doi.org/10.1111/1468-0017.00154
Landerl K, Bevan A, Butterworth B. Developmental dyscalculia and basic numerical capacities: a study of 8-9 year old students. Cognition 2004; 93: 99-125. http://dx.doi.org/10.1016/j.cognition.2003.11.004 DOI: https://doi.org/10.1016/j.cognition.2003.11.004
Piazza M, Facoetti A, Trussardi AN, Berteletti I, Conte S, Lucangeli D, Zorzi M. Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition 2010; 116: 33-41. http://dx.doi.org/10.1016/j.cognition.2010.03.012 DOI: https://doi.org/10.1016/j.cognition.2010.03.012
Mussolin C, Mejias S, Noël MP. Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition 2010; 115: 10-25. http://dx.doi.org/10.1016/j.cognition.2009.10.006 DOI: https://doi.org/10.1016/j.cognition.2009.10.006
Molko N, Cachia A, Riviere D, Mangin, JF, Bruandet M, Le Bihan D, Cohen L, Dehaene S. Functional and structural alterations of the intraparietal sulcus in developmental dyscalculia of genetic origin. Neuron 2003; 40: 847-58. http://dx.doi.org/10.1016/S0896-6273(03)00670-6 DOI: https://doi.org/10.1016/S0896-6273(03)00670-6
Price GR, Holloway I, Rasanen P, Vesterinen M, Ansari D. Impaired parietal magnitude processing in developmental dyscalculia. Curr Biol 2007; 17: R1042-R1043. http://dx.doi.org/10.1016/j.cub.2007.10.013 DOI: https://doi.org/10.1016/j.cub.2007.10.013
Rotzer S, Kucian K, Martin E, Von Aster M, Klever P, Loenneker T. Optimized voxel-based morphometry in children with developmental dyscalculia. NeuroImage 2008; 39: 417-22. http://dx.doi.org/10.1016/j.neuroimage.2007.08.045 DOI: https://doi.org/10.1016/j.neuroimage.2007.08.045
Rubinsten O, Henik A. Automatic activation of internal magnitudes: A study of developmental dyscalculia. Neuropsychology 2005; 19: 641-48. http://dx.doi.org/10.1037/0894-4105.19.5.641 DOI: https://doi.org/10.1037/0894-4105.19.5.641
Bertelli I, Lucangeli D, Piazza M, Dehaene S, Zorzi M. Numerical estimation in preschoolers. Develop Psychol 2010; 46: 545-51. http://dx.doi.org/10.1037/a0017887 DOI: https://doi.org/10.1037/a0017887
Booth JL, Siegler RS. Numerical magnitude representations in fluence arithmetic learning. Child Develop 2008; 79: 1016-31. http://dx.doi.org/10.1111/j.1467-8624.2008.01173.x DOI: https://doi.org/10.1111/j.1467-8624.2008.01173.x
Dehaene S. Varieties of numerical abilities. Cognition 1992; 44(1-2): 1-42. http://dx.doi.org/10.1016/0010-0277(92)90049-N DOI: https://doi.org/10.1016/0010-0277(92)90049-N
Desoete A, Praet M, Titeca D, Ceulemans A. Cognitive phenotype of mathematical learning disabilities: What can we learn from siblings? Res Develop Disabilit 2013; 34: 404-12. http://dx.doi.org/10.1016/j.ridd.2012.08.022 DOI: https://doi.org/10.1016/j.ridd.2012.08.022
Wechsler D. WPPSI-III-NL Administration and scoring manual. TX: The Psychological Corporation 2002.
Dehaene S, Izard V, Piazza M. Control over non-numerical parameters in numerosity experiments. Unpublished manuscript 2005 (available at www.unicog.org). Retrieved from http://www.unicog.org/docs/DocumentationDots Generation.doc.
Siegler RS, Booth JL. Development of numerical estimation in young children. Child Develop 2004; 75: 428-44. http://dx.doi.org/10.1111/j.1467-8624.2004.00684.x DOI: https://doi.org/10.1111/j.1467-8624.2004.00684.x
Grégoire J, Noel M, Van Nieuwenhoven C. TEDI-MATH. TEMA: Brussel/ Harcourt: Antwerpen 2004.
Baudonck M, Debusschere A, Dewulf B, Samyn F, Vercaemst V, Desoete A. De Kortrijkse Rekentest Revision KRT-R. [The Kortrijk Arithmetic Test Revision KRT-R]. Kortrijk, Belgium: CAR Overleie 2006.
De Vos T. Tempo-Test Rekenen [Arithmetic number fact test].Nijmegen: Berkhout 1992.
Noel MP, Rousselle L. Developmental changes in the profiles of dyscalculia: an explanation based on a double exact-and-approximate number representation model. Frontiers Neurosci 2011; 5(165): 1-4. DOI: https://doi.org/10.3389/fnhum.2011.00165
Pieters S, Roeyers H, Rosseel Y, Van Waelvelde H, Desoete A. Identifying subtypes among children with developmental coordination disorder and mathematical learning disabilities, using model-based clustering. J Learn Disabilit 2013; in press. http://dx.doi.org/10.1177/0022219413491288 DOI: https://doi.org/10.1177/0022219413491288