An Analysis of the Survival of Gall Bladder Patients in a Tertiary Cancer Center in India using Accelerated Failure Time Models

Authors

  • Anurag Sharma Department of Statistics, Ram Lal Anand College, University of Delhi, Delhi, India https://orcid.org/0000-0002-3482-0774
  • Komal Komal Department of Statistics, University of Delhi, Delhi, India

DOI:

https://doi.org/10.6000/1929-6029.2022.11.17

Keywords:

Accelerated failure time models, Gall Bladder Cancer, time ratio, time to event data

Abstract

Objective: Accelerated Failure Time (AFT) models are an useful alternative of Cox- PH model to determine the significant predictors affecting the survival of the patients. This article aims to determine the significant prognostic factors of hospitalized Gall Bladder Cancer patients in Rajiv Gandhi Cancer Institute and Research Center, New Delhi, India by applying AFT Models. To the best of our knowledge, this is the first study to be carried out in India identifying the factors of Gall bladder patients using AFTM.

Materials and Methods: The data are taken from original proformae of 652 hospital admitted Gall Bladder patients from a tertiary care hospital from Delhi from the period January 2012 to December 2016. These models take the logarithm of survival time, S(t) as dependent variable and prognostic factors as independent variables. Thereby, effect of these prognostic factors is multiplicative and therefore these models can be easily interpreted. AFTM demonstrates the predictor’s effect in terms of time ratio (TR). Analysis was implemented on R software version 3.5.1.

Results and Conclusions: In the Gall Bladder data considered in this article, shape of hazard function, H(t) and the exploratory data analysis falls in line with the Lognormal AFT model. AFT models give an estimate of Time Ratio which helps doctors, clinicians, epidemiologists etc. to determine the effect of treatment in terms of an increasing/decreasing survival time.

References

Cox DR, Snell EJ. A general definition of residuals. J R Stat Soc Ser B 1968; 30(2): 248-65. https://doi.org/10.1111/j.2517-6161.1968.tb00724.x DOI: https://doi.org/10.1111/j.2517-6161.1968.tb00724.x

Crowley J, Hu M. Covariance analysis of heart transplant survival data. J Am Stat Assoc 1977; 72(357): 27-36. https://doi.org/10.1080/01621459.1977.10479903 DOI: https://doi.org/10.1080/01621459.1977.10479903

Andersen PK. Survival analysis 1982-1991: the second decade of the proportional hazards regression model. Stat Med 1991; 10(12): 1931-41. https://doi.org/10.1002/sim.4780101208 DOI: https://doi.org/10.1002/sim.4780101208

Aalen OO. Medical statistics--no time for complacency. Stat Methods Med Res 2000 Feb; 9(1): 31-40. https://doi.org/10.1191/096228000671850673 DOI: https://doi.org/10.1191/096228000671850673

Kalbfleisch JD, Prentice RL. Survival models and data analysis. New York, NY: John Wiley; 1980.

Jacquillat C, Weil M, Auclerc MF, Schaison G, Chastang C, Harousseau JL, et al. Application of the study of prognostic factors to the treatment of childhood (less than 20 years old) acute lymphoblastic leukemia. Bull Cancer 1980; 67(4): 458-69.

Lawless JF. Statistical models and methods for lifetime data. Vol. 362. John Wiley & Sons; 2011.

Cox DR, Oakes D. Analysis of survival data. Vol. 21. CRC Press; 1984.

Urken ML, Weinberg H, Vickery C, Aviv JE, Buchbinder D, Lawson W, et al. The combined sensate radial forearm and iliac crest free flaps for reconstruction of significant glossectomy-mandibulectomy defects. Laryngoscope 1992; 102(5): 543-58. https://doi.org/10.1288/00005537-199205000-00014 DOI: https://doi.org/10.1288/00005537-199205000-00014

Van der Burg E, De Leeuw J, Dijksterhuis G. OVERALS: Nonlinear canonical correlation with k sets of variables. Comput Stat Data Anal 1994; 18(1): 141-63. https://doi.org/10.1016/0167-9473(94)90136-8 DOI: https://doi.org/10.1016/0167-9473(94)90136-8

Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 1996; 58(1): 267-88. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x DOI: https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Makridakis S, Hibon M. ARMA models and the Box-Jenkins methodology. J Forecast 1997; 16(3): 147-63. https://doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X DOI: https://doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X

Hosmer Jr DW, Lemeshow S. Applied survival analysis: time-to-Event. Vol. 317. Wiley-Interscience; 1999.

Emmert-Streib F, Dehmer M. Introduction to survival analysis in practice. Mach Learn Knowl Extr 2019; 1(3): 1013-38. https://doi.org/10.3390/make1030058 DOI: https://doi.org/10.3390/make1030058

Clark TG, Bradburn MJ, Love SB, Altman DG. Survival analysis part I: basic concepts and first analyses. Br J Cancer 2003 Jul; 89(2): 232-8. https://doi.org/10.1038/sj.bjc.6601118 DOI: https://doi.org/10.1038/sj.bjc.6601118

Chen C, Liu Y, Wang S, Sun X, Di Cairano-Gilfedder C, Titmus S, et al. Predictive maintenance using cox proportional hazard deep learning. Adv Eng Informatics 2020; 44: 101054. https://doi.org/10.1016/j.aei.2020.101054 DOI: https://doi.org/10.1016/j.aei.2020.101054

Stensrud MJ, Aalen JM, Aalen OO, Valberg M. Limitations of hazard ratios in clinical trials. Eur Heart J 2019. https://doi.org/10.1093/eurheartj/ehy770 DOI: https://doi.org/10.1093/eurheartj/ehy770

Parsa M, Van Keilegom I. Accelerated failure time vs Cox proportional hazards mixture cure models: David vs Goliath? Stat Pap 2022; 1-21. https://doi.org/10.1007/s00362-022-01345-5 DOI: https://doi.org/10.1007/s00362-022-01345-5

Khanal SP, Sreenivas V, Acharya SK. Comparison of cox proportional hazards model and lognormal accelerated failure time model: application in time to event analysis of acute liver failure patients in India. Nepal J Stat 2019; 3: 21-40. https://doi.org/10.3126/njs.v3i0.25576 DOI: https://doi.org/10.3126/njs.v3i0.25576

Patel K, Kay R, Rowell L. Comparing proportional hazards and accelerated failure time models: an application in influenza. Pharm Stat [Internet] 2006 Jul 1; 5(3): 213-24. A https://doi.org/10.1002/pst.213 DOI: https://doi.org/10.1002/pst.213

Kay R, Kinnersley N. On the Use of the Accelerated Failure Time Model As An Alternative to the Proportional Hazards Model in the Treatment of Time to Event Data: A Case Study in Influenza. Drug Inf J DIJ / Drug Inf Assoc [Internet] 2002; 36(3): 571-9. https://doi.org/10.1177/009286150203600312 DOI: https://doi.org/10.1177/009286150203600312

Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr 1974; 19(6): 716-23. https://doi.org/10.1109/TAC.1974.1100705 DOI: https://doi.org/10.1109/TAC.1974.1100705

Collett D. Modelling survival data in medical research, third edition. Modelling Survival Data in Medical Research, Third Edition 2015; pp. 1-521. https://doi.org/10.1201/b18041 DOI: https://doi.org/10.1201/b18041

Lemeshow S, May S, Hosmer Jr DW. Applied survival analysis: regression modeling of time-to-event data. John Wiley & Sons; 2011.

Klein JP, Moeschberger ML. Survival Analysis: Techniques for Censored and Truncated Data Springer. New York 1997;

Cox DR. Regression Models and Life-Tables. J R Stat Soc Ser B [Internet] 1972; 34(2): 187-202. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x DOI: https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

Kwong GPS, Hutton JL. Choice of parametric models in survival analysis: applications to monotherapy for epilepsy and cerebral palsy. J R Stat Soc Ser C (Applied Stat [Internet] 2003 May 1; 52(2): 153-68. https://doi.org/10.1111/1467-9876.00395 DOI: https://doi.org/10.1111/1467-9876.00395

Cox C, Chu H, Schneider MF, Munoz A. Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distribution. Stat Med 2007; 26(23): 4352-74. https://doi.org/10.1002/sim.2836 DOI: https://doi.org/10.1002/sim.2836

Orbe J, Ferreira E, Núñez-Antón V. Comparing proportional hazards and accelerated failure time models for survival analysis. Stat Med 2002; 21(22): 3493-510. https://doi.org/10.1002/sim.1251 DOI: https://doi.org/10.1002/sim.1251

Downloads

Published

2022-11-23

How to Cite

Sharma, A. ., & Komal, K. (2022). An Analysis of the Survival of Gall Bladder Patients in a Tertiary Cancer Center in India using Accelerated Failure Time Models. International Journal of Statistics in Medical Research, 11, 136–140. https://doi.org/10.6000/1929-6029.2022.11.17

Issue

Section

General Articles