Cox Proportional Hazard Regression Interaction Model and Its Application to Determine The Risk of Death in Breast Cancer Patients after Chemotherapy

Authors

  • M. Ivan Ariful Fathoni Department of Mathematics, Universitas Gadjah Mada, Indonesia and Department of Mathematics Education, Universitas Nahdlatul Ulama Sunan Giri, Indonesia https://orcid.org/0000-0002-4925-1455
  • Gunardi Department of Mathematics, Universitas Gadjah Mada, Indonesia
  • Fajar Adi-Kusumo Department of Mathematics, Universitas Gadjah Mada, Indonesia
  • Susanna Hilda Hutajulu Department of Internal Medicine, Universitas Gadjah Mada, Indonesia
  • Ibnu Purwanto Department of Internal Medicine, Universitas Gadjah Mada, Indonesia

DOI:

https://doi.org/10.6000/1929-6029.2022.11.13

Keywords:

Survival Analysis, Cox Proportional Hazard, Breast Cancer, Chemotherapy, Risk of Death

Abstract

Introduction: This research is based on medical record data of breast cancer patients who seek treatment at the Central General Hospital, dr. Sardjito Yogyakarta, from 2018-2021 has as many as 105 patients. Several risk factors for cancer include demographic factors, clinical factors, tumor factors, and therapy. These factors lead to different psychological states of patients, resulting in the rate of recovery and death of patients.

Objective: To determine the risk of death in breast cancer patients after chemotherapy.

Methods: The method used in this study is Cox Proportional Hazard survival analysis with an interaction model. The variables studied were age, marital status, profession, insurance, BMI, comorbidities, duration of chemotherapy, chemotherapy agent, chemotherapy type, and tumor size.

Results: The analysis results using SPSS software obtained the best hazard and survival model with four significant variables, namely the duration of chemotherapy, chemotherapy agents, chemotherapy types, and the interaction between BMI and chemotherapy types.

Conclusions: The most significant risk factor for death was palliative chemotherapy type with HR 27.195 and 3-5 chemotherapy agents with HR 4.997. Meanwhile, the long duration of chemotherapy and the interaction between lean BMI and palliative chemotherapy reduced the risk of death by HR 0.967 and 0.128, respectively.

References

Globocan. Breast: International Agency for Research on Cancer, WHO; 2020. Available from: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf.

Society AC. Breast cancer 2019. Available from: https://www.cancer.org/cancer/breast-cancer.html

Pangribowo S. Beban Kanker Di Indonesia. Jakarta Selatan: InfoDATIN Pusat Data dan Informasi Kementerian Kesehatan RI; 2019.

FKKMK C. RKBR Maret 2018: RKBR Maret 2018 – canreg.fk.ugm.ac.id; 2018. https://doi.org/10.22146/mgi.35331 DOI: https://doi.org/10.22146/mgi.35331

Dalimartha S. Deteksi dini kanker & simplisia antikanker. Penebar Swadaya; 2004.

Anwar SL, Tampubolon G, Van Hemelrijck M, et al. Determinants of cancer screening awareness and participation among Indonesian women. BMC Cancer 2018; 18(1): 1-11. https://doi.org/10.1186/s12885-018-4125-z DOI: https://doi.org/10.1186/s12885-018-4125-z

Yang Y, Sun H, Liu T, et al. Factors associated with fear of progression in chinese cancer patients: sociodemographic, clinical and psychological variables. Journal of Psychosomatic Research 2018; 114: 18-24. https://doi.org/10.1016/j.jpsychores.2018.09.003 DOI: https://doi.org/10.1016/j.jpsychores.2018.09.003

Bail JR, Traeger L, Pirl WF, et al. editors. Psychological symptoms in advanced cancer. Seminars in oncology nursing; 2018: Elsevier. https://doi.org/10.1016/j.soncn.2018.06.005 DOI: https://doi.org/10.1016/j.soncn.2018.06.005

Bazhenova L, Lokker A, Snider J, et al. TRK fusion cancer: patient characteristics and survival analysis in the real-world setting. Targeted Oncology 2021; 16(3): 389-399. https://doi.org/10.1007/s11523-021-00815-4 DOI: https://doi.org/10.1007/s11523-021-00815-4

Nagy Á, Munkácsy G, Győrffy B. Pancancer survival analysis of cancer hallmark genes. Scientific Reports 2021; 11(1): 1-10. https://doi.org/10.1038/s41598-021-84787-5 DOI: https://doi.org/10.1038/s41598-021-84787-5

Ősz Á, Lánczky A, Győrffy B. Survival analysis in breast cancer using proteomic data from four independent datasets. Scientific Reports 2021; 11(1): 1-15. https://doi.org/10.1038/s41598-021-96340-5 DOI: https://doi.org/10.1038/s41598-021-96340-5

Zengel B, Kilic M, Tasli F, et al. Breast cancer patients with isolated bone metastases and oligometastatic bone disease show different survival outcomes. Scientific Reports 2021; 11(1): 1-12. https://doi.org/10.1038/s41598-021-99726-7 DOI: https://doi.org/10.1038/s41598-021-99726-7

Sarin R, Khandrika L, Hanitha R, et al. Epidemiological and survival analysis of triple-negative breast cancer cases in a retrospective multicenter study. Indian Journal of Cancer 2016; 53(3): 353. DOI: https://doi.org/10.4103/0019-509X.200682

Fathoni MIA, Gunardi, Adi Kusumo F, Hutajulu SH. Survival analysis of breast ancer patients in Yogyakarta. Journal of Physics: Conference Series; 2021: IOP Publishing. https://dx.doi.org/10.1088/1742-6596/1722/1/012060 DOI: https://doi.org/10.1088/1742-6596/1722/1/012060

Hanni T, Wuryandari T. Model Regresi Cox Proporsional Hazard pada Data Ketahanan Hidup. Media Statistika 2013; 6(1): 11-20. https://doi.org/10.14710/medstat.6.1.11-20 DOI: https://doi.org/10.14710/medstat.6.1.11-20

Ernawatiningsih NPL. Analisis Survival Dengan Model Regresi Cox Study Kasus: Pasien Demam Berdarah Dengue di Rumah Sakit Haji Surabaya. Jurnal Matematika 2012; 2(2): 25-32. http://eprints.unm.ac.id/id/eprint/8351

Downloads

Published

2022-10-21

How to Cite

Fathoni, M. I. A. ., Gunardi, Adi-Kusumo, F. ., Hutajulu, S. H. ., & Purwanto, I. . (2022). Cox Proportional Hazard Regression Interaction Model and Its Application to Determine The Risk of Death in Breast Cancer Patients after Chemotherapy. International Journal of Statistics in Medical Research, 11, 105–113. https://doi.org/10.6000/1929-6029.2022.11.13

Issue

Section

General Articles