Feature Selection in Statistical Classification

Authors

  • Matthias Kohl Department of Mechanical and Process Engineering, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 VS-Schwenningen, Germany

DOI:

https://doi.org/10.6000/1929-6029.2012.01.02.11

Keywords:

Statistical classification, supervised statistical learning, machine learning, curse of dimensionality, over-fitting, feature selection, filter, ranker, wrapper, embedded methods

Abstract

We give a brief overview of feature selection methods used in statistical classification. We cover filter, wrapper and embedded methods.

Author Biography

Matthias Kohl, Department of Mechanical and Process Engineering, Furtwangen University, Jakob-Kienzle-Str. 17, D-78054 VS-Schwenningen, Germany

Department of Mechanical and Process Engineering,

References

Hastie T., Tibshirani R., and Friedman J. The elements of statistical learning. 2nd edition. Springer 2009.http://dx.doi.org/10.1007/978-0-387-84858-7 DOI: https://doi.org/10.1007/978-0-387-84858-7

Kohl M. Performance measures in binary classification. Int J Stats Med Res 2012 Sep; 1(1): 79-81. DOI: https://doi.org/10.6000/1929-6029.2012.01.01.08

Guyon I. and Elisseeff A. An introduction to variable and feature selection. Journal of Machine Learning Research 2003 Mar; 1157–1182, Mar 2003.

Navot A., Gilad-Bachrach R., Navot Y. and Tishby N. mIs Feature Selection Still Necessary? In: Saunders C., Grobelnik M., Gunn S., and Shawe-Taylor J., editors. mSubspace, Latent Structure and Feature Selection. Lecture Notes in Computer Science, volume 3940; Springer 2006: p. 127-138. DOI: https://doi.org/10.1007/11752790_8

Bourgon R., Gentleman R., and Huber, W. Independent filtering increases detection power for high-throughput experiments. Proc. Natl. Acad. Sci. U.S.A. 2010 May; 107(21): 9546-51.http://dx.doi.org/10.1073/pnas.0914005107 DOI: https://doi.org/10.1073/pnas.0914005107

Koller D. and Sahami M. Toward optimal feature selection. In: 13th International Conference on Machine Learning, July 1996: p. 284-292.

Hall M.A. and Holmes G. Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Know. Data Eng. 2003 May/Jun; 15(3): 1437-47. http://dx.doi.org/10.1109/TKDE.2003.1245283 DOI: https://doi.org/10.1109/TKDE.2003.1245283

Pochet N., De Smet F., Suykens J.A.K., and De Moor B.L.R. Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction. Bioinformatics 2004 Nov; 20(17): 3185-95. http://dx.doi.org/10.1093/bioinformatics/bth383 DOI: https://doi.org/10.1093/bioinformatics/bth383

Downloads

Published

2012-12-20

How to Cite

Kohl, M. (2012). Feature Selection in Statistical Classification. International Journal of Statistics in Medical Research, 1(2), 177–178. https://doi.org/10.6000/1929-6029.2012.01.02.11

Issue

Section

General Articles