Statistical Analyses of Mutually Exclusive Competing Risks in Neonatal Studies

Authors

  • C. Engel Center for Pediatric Clinical Studies, Biometry University Children’s Hospital Tuebingen, Frondsbergstraße 23, 72070 Tübingen, Germany
  • A.R. Franz Center for Pediatric Clinical Studies, Methods University Children’s Hospital Tuebingen, Frondsbergstraße 23, 72070 Tübingen, Germany

DOI:

https://doi.org/10.6000/1929-6029.2016.05.03.5

Keywords:

Competing risk, randomized controlled trial, composite outcome, chi-square test, post-hoc testing

Abstract

Following the well-established approach on how to deal with competing risks in the situation of time-to-event endpoints, cumulative incidences have to be used to analyse each single category of an outcome in the situation of competing risks without a time-to-event structure as well. This can be easily done by applying a simple chi-square test.

Nevertheless, these categorial outcomes are usually combined to get a composed dichotomous outcome to face the problem on how to deal with a significant chi-square omnibus test in the situation of more than 1 df, i.e. > 2x2 tables.

The aim of this report is to question the practice of combined, i.e. composed dichotomized, endpoints because important information is lost and the real effect of interest in confirmatory phase III studies may only become apparent in explorative secondary analyses.

It is shown – by using hypothetical data and by recalculation of published phase III studies’ results – how the use of a chi-square omnibus test and the scarcely known post-hoc testing answers the real question of interest within one primary confirmatory analysis. This method reveals insight into the actual effect of a new treatment or therapy on the event of interest in the presence of a mutually exclusive competing risk

References

Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med 1999; 18: 695-706. http://dx.doi.org/10.1002/(SICI)1097-0258(19990330)18:6<695::AID-SIM60>3.0.CO;2-O DOI: https://doi.org/10.1002/(SICI)1097-0258(19990330)18:6<695::AID-SIM60>3.0.CO;2-O

Cheng SC, Fine JB, Wei LJ. Prediction of cumulative incidence function under the proportional hazards model. Biometrics 1998; 54: 219-228. http://dx.doi.org/10.2307/2534009 DOI: https://doi.org/10.2307/2534009

Dignam JJ, Zhang Q, Kocherginsky M. The use and interpretation of competing risks regression models. Clin Cancer Res 2012; 18(8): 2301-2308. http://dx.doi.org/10.1158/1078-0432.CCR-11-2097 DOI: https://doi.org/10.1158/1078-0432.CCR-11-2097

Chappel R. Competing risk analyses: How are they different and why should you care? Clin Cancer Res 2012; 18(8): 2127-2129. http://dx.doi.org/10.1158/1078-0432.CCR-12-0455 DOI: https://doi.org/10.1158/1078-0432.CCR-12-0455

Schmoor C, Schumacher M, Finke J, Beyersmann J. Competing risks and multistate models. Clin Cancer Res 2013; 19(1): 12-21. http://dx.doi.org/10.1158/1078-0432.CCR-12-1619 DOI: https://doi.org/10.1158/1078-0432.CCR-12-1619

Spratt DE, Wu AJ, Adeseye V, et al. Recurrence patterns and second primary lung cancers after stereotactic body radiation therapy for early-stage non-small-cell lung cancer: Implications for surveillance. Clin Lung Cancer 2015; Oct 1. pii: S1525-7304(15)00238-7. http://dx.doi.org/10.1016/j.cllc.2015.09.006 DOI: https://doi.org/10.1016/j.cllc.2015.09.006

Wulaningsih W, Vahdaninia M, Rowley M, et al. Prediagnostic serum glucose and lipids in relation to survival in breast cancer patients: a competing risk analysis. BMC Cancer 2015; 15(913): 1-9. http://dx.doi.org/10.1186/s12885-015-1928-z DOI: https://doi.org/10.1186/s12885-015-1928-z

Turin TC, Okamura T, Afzahl AR, et al. Hypertension and lifetime risk of stroke. J Hypertens 2016; 34(1): 116-122. http://dx.doi.org/10.1097/HJH.0000000000000753 DOI: https://doi.org/10.1097/HJH.0000000000000753

Bassler D, Plavka R, Shinwell ES, et al. for the NEUROSIS Trial Group. Early inhaled budesonide for the prevention of bronchopulmonary dysplasia. N Engl J Med 2015; 373: 1497-1456. http://dx.doi.org/10.1056/NEJMoa1501917 DOI: https://doi.org/10.1056/NEJMoa1501917

SUPPORT Study Group of the Eunice Kennedy shriver NICHD Neonatal Research Network. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med 2010; 362: 1970-1979. http://dx.doi.org/10.1056/NEJMoa0911783 DOI: https://doi.org/10.1056/NEJMoa0911783

SUPPORT Study Group of the Eunice Kennedy shriver NICHD Neonatal Research Network. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 2010; 362: 1959-1969. http://dx.doi.org/10.1056/NEJMoa0911781 DOI: https://doi.org/10.1056/NEJMoa0911781

Shankaran S, Pappas A, McDonald SA, et al. for the Eunice Kennedy shriver NICHD Neonatal Research Network. Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med 2012; 366: 2085-2092. http://dx.doi.org/10.1056/NEJMoa1112066 DOI: https://doi.org/10.1056/NEJMoa1112066

Azzopardi D, Strohm B, Marlow N, et al. for the TOBY Study Group. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med 2014; 371: 140-149. http://dx.doi.org/10.1056/NEJMoa1315788 DOI: https://doi.org/10.1056/NEJMoa1315788

Mayo Clinic [homepage on the internet]. Locally written SAS macros (cited 2016 January 14): available from http://www.mayo.edu/research/departments-divisions/department-health-sciences-research/division-biomedical-statistics-informatics/software/locally-written-sas-macros

Mantel N, Haenszel W. Statistical Aspects of the Analysis of Data From Restrospective Studies of Disease. JNCI – J Natl Cancer Institute 1959; 22(4): 719-748.

Sharpe D. Your Chi-Square Test is Statistically Significant: Now What? Practical Assessment, Research & Evaluation 2015; 20(8). Available online: http://pareonline.net/ getvn.asp?v=20&n=8

Franke TM, Ho T, Christie ChA. The chi-square test: Often used and more often misinterpreted. Am J Eval 2012; 33(3): 448-458. http://dx.doi.org/10.1177/1098214011426594 DOI: https://doi.org/10.1177/1098214011426594

Agresti A. Categorical data analysis (3rd ed.). Hoboken NJ: Wiley 2013.

MacDonald PL, Gardner RC. Type I error rate comparisons of post hoc procedures for IxJ chi-square tables. Educ Psychol Meas 2000; 60(5): 735-754. http://dx.doi.org/10.1177/00131640021970871 DOI: https://doi.org/10.1177/00131640021970871

Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of prematurity. NEJM 2006; 354: 2112-2121. http://dx.doi.org/10.1056/NEJMoa054065 DOI: https://doi.org/10.1056/NEJMoa054065

Downloads

Published

2016-08-16

How to Cite

Engel, C., & Franz, A. (2016). Statistical Analyses of Mutually Exclusive Competing Risks in Neonatal Studies. International Journal of Statistics in Medical Research, 5(3), 189–197. https://doi.org/10.6000/1929-6029.2016.05.03.5

Most read articles by the same author(s)