Recalibration in Validation Studies of Diabetes Risk Prediction Models: A Systematic Review

Authors

  • Katya L. Masconi Division of Chemical Pathology, Faculty of Health Sciences, National Health Laboratory Service (NHLS) and University of Stellenbosch, Cape Town, South Africa
  • Tandi E. Matsha Department of Biomedical Technology, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
  • Rajiv T. Erasmus Division of Chemical Pathology, Faculty of Health Sciences, National Health Laboratory Service (NHLS) and University of Stellenbosch, Cape Town, South Africa
  • Andre P. Kengne Non-Communicable Diseases Research Unit, South African Medical Research Council, South Africa

DOI:

https://doi.org/10.6000/1929-6029.2015.04.04.5

Keywords:

Risk prediction, diabetes, update, recalibration, validation

Abstract

Background: Poor performance of risk prediction models in a new setting is common. Recalibration methods aim to improve the prediction performance of a model in a validation population, however the extent of its application in the validation of diabetes risk prediction models is not yet known.

Methods: We critically reviewed published validation studies of diabetes prediction models, selected from five recent comprehensive systematic reviews and database searches. Common recalibration techniques applied were described and the extent to which recalibration and impacts were reported analysed.

Results: Of the 236 validations identified, 22.9% (n = 54) undertook recalibration on existent models in the validation population. The publication of these studies was consistent from 2008. Only incident diabetes risk prediction models were validated, and the most commonly validated Framingham offspring simple clinical risk model was the most recalibrated of the models, in 4 studies (7.4%).

Conclusions: This review highlights the lack of attempt by validation studies to improve the performance of the existent models in new settings. Model validation is a fruitless exercise if the model is not recalibrated or updated to allow for greater accuracy. This halts the possible implementation of an existent model into routine clinical care. The use of recalibration procedures should be encouraged in all validation studies, to correct for the anticipated drop in model performance.

References

Steyerberg EW. Clinical Prediction Models: A practical approach to development, validation, and updating. Gail M, Krickeberg K, Samet J, Tsiati A, Wong W, editors: Springer; 2009. 500 p.

Steyerberg EW, Borsboom GJ, van Houwelingen HC, Eijkemans MJ, Habbema JDF. Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. Statistics in medicine 2004; 23: 2567-86. http://dx.doi.org/10.1002/sim.1844 DOI: https://doi.org/10.1002/sim.1844

Janssen K, Moons K, Kalkman C, Grobbee D, Vergouwe Y. Updating methods improved the performance of a clinical prediction model in new patients. J Clin Epidemiol 2008; 61: 76-86. http://dx.doi.org/10.1016/j.jclinepi.2007.04.018 DOI: https://doi.org/10.1016/j.jclinepi.2007.04.018

Collins GS, de Groot JA, Dutton S, Omar O, Shanyinde M, Tajar A, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol 2014; 14: 40. http://dx.doi.org/10.1186/1471-2288-14-40 DOI: https://doi.org/10.1186/1471-2288-14-40

Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 diabetes: systematic review. BMJ 2011; 343. DOI: https://doi.org/10.1136/bmj.d7163

Kengne AP, Beulens JW, Peelen LM, Moons KG, van der Schouw YT, Schulze MB, et al. Non-invasive risk scores for prediction of type 2 diabetes (EPIC-InterAct): a validation of existing models. The Lancet Diabetes & Endocrinology 2014; 2: 19-29. http://dx.doi.org/10.1016/S2213-8587(13)70103-7 DOI: https://doi.org/10.1016/S2213-8587(13)70103-7

Buijsse B, Simmons RK, Griffin SJ, Schulze MB. Risk assessment tools for identifying individuals at risk of

developing type 2 diabetes. Epidemiologic reviews 2011: mxq019.

Collins GS, Mallett S, Omar O, Yu L-M. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC medicine 2011; 9: 103. http://dx.doi.org/10.1186/1741-7015-9-103 DOI: https://doi.org/10.1186/1741-7015-9-103

Thoopputra T, Newby D, Schneider J, Li SC. Survey of diabetes risk assessment tools: concepts, structure and performance. Diabetes Metab Res Rev 2012; 28: 485-98. http://dx.doi.org/10.1002/dmrr.2296 DOI: https://doi.org/10.1002/dmrr.2296

Brown N, Critchley J, Bogowicz P, Mayige M, Unwin N. Risk scores based on self-reported or available clinical data to detect undiagnosed type 2 diabetes: a systematic review. Diabetes research and clinical practice 2012; 98: 369-85. http://dx.doi.org/10.1016/j.diabres.2012.09.005 DOI: https://doi.org/10.1016/j.diabres.2012.09.005

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine 2009; 151: 264-9. http://dx.doi.org/10.7326/0003-4819-151-4-200908180-00135 DOI: https://doi.org/10.7326/0003-4819-151-4-200908180-00135

Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Annals of internal medicine 1999; 130: 515-24. http://dx.doi.org/10.7326/0003-4819-130-6-199903160-00016 DOI: https://doi.org/10.7326/0003-4819-130-6-199903160-00016

Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D’Agostino RB. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med 2007; 167: 1068-74. http://dx.doi.org/10.1001/archinte.167.10.1068 DOI: https://doi.org/10.1001/archinte.167.10.1068

Mann DM, Bertoni AG, Shimbo D, Carnethon MR, Chen H, Jenny NS, et al. Comparative Validity of 3 Diabetes Mellitus Risk Prediction Scoring Models in a Multiethnic US Cohort The Multi-Ethnic Study of Atherosclerosis. American journal of epidemiology 2010; 171: 980-8. http://dx.doi.org/10.1093/aje/kwq030 DOI: https://doi.org/10.1093/aje/kwq030

Lindström J, Tuomilehto J. The Diabetes Risk Score A practical tool to predict type 2 diabetes risk. Diabetes Care 2003; 26: 725-31. http://dx.doi.org/10.2337/diacare.26.3.725 DOI: https://doi.org/10.2337/diacare.26.3.725

Saaristo T, Peltonen M, Lindström J, Saarikoski L, Sundvall J, Eriksson JG, et al. Cross-sectional evaluation of the Finnish Diabetes Risk Score: a tool to identify undetected type 2 diabetes, abnormal glucose tolerance and metabolic syndrome. Diabetes and Vascular Disease Research 2005; 2: 67-72. http://dx.doi.org/10.3132/dvdr.2005.011 DOI: https://doi.org/10.3132/dvdr.2005.011

D'Agostino Sr RB, Grundy S, Sullivan LM, Wilson P. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. Jama 2001; 286: 180-7. http://dx.doi.org/10.1001/jama.286.2.180 DOI: https://doi.org/10.1001/jama.286.2.180

Hosmer Jr DW, Lemeshow S. Applied logistic regression: John Wiley & Sons; 2004. DOI: https://doi.org/10.1002/0470011815.b2a10029

Ivanov J, Tu JV, Naylor CD. Ready-made, recalibrated, or remodeled? Issues in the use of risk indexes for assessing mortality after coronary artery bypass graft surgery. Circulation 1999; 99: 2098-104. http://dx.doi.org/10.1161/01.CIR.99.16.2098 DOI: https://doi.org/10.1161/01.CIR.99.16.2098

Toll D, Janssen K, Vergouwe Y, Moons K. Validation, updating and impact of clinical prediction rules: a review. J Clin Epidemiol 2008; 61: 1085-94. http://dx.doi.org/10.1016/j.jclinepi.2008.04.008 DOI: https://doi.org/10.1016/j.jclinepi.2008.04.008

Nelson W. Applied life data analysis, 1982. Statistics, Published by John Wiley & Sons, lnc, New York, NY. DOI: https://doi.org/10.1002/0471725234

Cox D. Regression models and life-tables JR Statist Soc B 34: 187–220. Find this article online 1972. DOI: https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

van Houwelingen HC. Validation, calibration, revision and combination of prognostic survival models. Statistics in medicine 2000; 19: 3401-15. http://dx.doi.org/10.1002/1097-0258(20001230)19:24<3401::AID-SIM554>3.0.CO;2-2 DOI: https://doi.org/10.1002/1097-0258(20001230)19:24<3401::AID-SIM554>3.0.CO;2-2

Bozorgmanesh M, Hadaegh F, Ghaffari S, Harati H, Azizi F. A simple risk score effectively predicted type 2 diabetes in Iranian adult population: population-based cohort study. The European Journal of Public Health 2011; 21: 554-9. http://dx.doi.org/10.1093/eurpub/ckq074 DOI: https://doi.org/10.1093/eurpub/ckq074

Hartwig S, Kuss O, Tiller D, Greiser K, Schulze M, Dierkes J, et al. Validation of the German Diabetes Risk Score within a population‐based representative cohort. Diabetic Medicine 2013; 30: 1047-53. http://dx.doi.org/10.1111/dme.12216 DOI: https://doi.org/10.1111/dme.12216

Hippisley-Cox J, Coupland C, Brindle P. The performance of seven QPrediction risk scores in an independent external sample of patients from general practice: a validation study. BMJ Open 2014; 4: e005809. DOI: https://doi.org/10.1136/bmjopen-2014-005809

Rosella LC, Manuel DG, Burchill C, Stukel TA. A population-based risk algorithm for the development of diabetes: development and validation of the Diabetes Population Risk Tool (DPoRT). J Epidemiol Community Health 2011; 65: 613-20. http://dx.doi.org/10.1136/jech.2009.102244 DOI: https://doi.org/10.1136/jech.2009.102244

Nichols GA, Brown JB. Validating the Framingham Offspring Study equations for predicting incident diabetes mellitus. Am J Manag Care 2008; 14: 574-80.

Xu L, Jiang C, Schooling C, Zhang W, Cheng K, Lam T. Prediction of 4-year incident diabetes in older Chinese: Recalibration of the Framingham diabetes score on Guangzhou Biobank Cohort Study. Preventive medicine 2014; 69: 63-8. http://dx.doi.org/10.1016/j.ypmed.2014.09.004 DOI: https://doi.org/10.1016/j.ypmed.2014.09.004

Abbasi A, Corpeleijn E, Peelen LM, Gansevoort RT, de Jong PE, Gans RO, et al. External validation of the KORA S4/F4 prediction models for the risk of developing type 2 diabetes in older adults: the PREVEND study. Eur J Epidemiol 2012; 27: 47-52. http://dx.doi.org/10.1007/s10654-011-9648-4 DOI: https://doi.org/10.1007/s10654-011-9648-4

Rathmann W, Kowall B, Heier M, Herder C, Holle R, Thorand B, et al. Prediction models for incident type 2 diabetes mellitus in the older population: KORA S4/F4 cohort study. Diabetic Medicine 2010; 27: 1116-23. http://dx.doi.org/10.1111/j.1464-5491.2010.03065.x DOI: https://doi.org/10.1111/j.1464-5491.2010.03065.x

Abbasi A, Peelen LM, Corpeleijn E, van der Schouw YT, Stolk RP, Spijkerman AM, et al. Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study. BMJ: British Medical Journal 2012; 345. DOI: https://doi.org/10.1136/bmj.e5900

Alssema M, Vistisen D, Heymans M, Nijpels G, Glümer C, Zimmet P, et al. The Evaluation of Screening and Early Detection Strategies for Type 2 Diabetes and Impaired Glucose Tolerance (DETECT-2) update of the Finnish diabetes risk score for prediction of incident type 2 diabetes. Diabetologia 2011; 54: 1004-12. http://dx.doi.org/10.1007/s00125-010-1990-7 DOI: https://doi.org/10.1007/s00125-010-1990-7

Wannamethee S, Papacosta O, Whincup P, Thomas M, Carson C, Lawlor D, et al. The potential for a two‐stage diabetes risk algorithm combining non‐laboratory‐based scores with subsequent routine non‐fasting blood tests: results from prospective studies in older men and women. Diabetic Medicine 2011; 28: 23-30. http://dx.doi.org/10.1111/j.1464-5491.2010.03171.x DOI: https://doi.org/10.1111/j.1464-5491.2010.03171.x

Chen L, Magliano DJ, Balkau B, Colagiuri S, Zimmet PZ, Tonkin AM, et al. AUSDRISK: an Australian Type 2 Diabetes Risk Assessment Tool based on demographic, lifestyle and simple anthropometric measures. Medical Journal of Australia 2010; 192: 197. DOI: https://doi.org/10.5694/j.1326-5377.2010.tb03478.x

Joseph J, Svartberg J, Njølstad I, Schirmer H. Incidence of and risk factors for type-2 diabetes in a general population: The Tromsø Study. Scandinavian journal of public health 2010; 38: 768-75. http://dx.doi.org/10.1177/1403494810380299 DOI: https://doi.org/10.1177/1403494810380299

Kahn HS, Cheng YJ, Thompson TJ, Imperatore G, Gregg EW. Two risk-scoring systems for predicting incident diabetes mellitus in US adults age 45 to 64 years. Annals of Internal Medicine 2009; 150: 741-51. http://dx.doi.org/10.7326/0003-4819-150-11-200906020-00002 DOI: https://doi.org/10.7326/0003-4819-150-11-200906020-00002

Hippisley-Cox J, Coupland C, Robson J, Sheikh A, Brindle P. Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. Bmj 2009; 338. http://dx.doi.org/10.1136/bmj.b880 DOI: https://doi.org/10.1136/bmj.b880

Balkau B, Lange C, Fezeu L, Tichet J, de Lauzon-Guillain B, Czernichow S, et al. Predicting Diabetes: Clinical, Biological, and Genetic Approaches Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 2008; 31: 2056-61. http://dx.doi.org/10.2337/dc08-0368 DOI: https://doi.org/10.2337/dc08-0368

Simmons R, Harding AH, Wareham N, Griffin S. Do simple questions about diet and physical activity help to identify those at risk of Type 2 diabetes? Diabetic Medicine 2007; 24: 830-5. http://dx.doi.org/10.1111/j.1464-5491.2007.02173.x DOI: https://doi.org/10.1111/j.1464-5491.2007.02173.x

Schulze MB, Hoffmann K, Boeing H, Linseisen J, Rohrmann S, Möhlig M, et al. An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care 2007; 30: 510-5. http://dx.doi.org/10.2337/dc06-2089 DOI: https://doi.org/10.2337/dc06-2089

Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Annals of Internal Medicine 2002; 136: 575-81. http://dx.doi.org/10.7326/0003-4819-136-8-200204160-00006 DOI: https://doi.org/10.7326/0003-4819-136-8-200204160-00006

Von Eckardstein A, Schulte H, Assmann G. Risk for diabetes mellitus in middle-aged Caucasian male participants of the PROCAM study: implications for the definition of impaired fasting glucose by the American Diabetes Association. The Journal of Clinical Endocrinology & Metabolism 2000; 85: 3101-8. http://dx.doi.org/10.1210/jcem.85.9.6773 DOI: https://doi.org/10.1210/jcem.85.9.6773

Stern MP, Morales PA, Valdez RA, Monterrosa A, Haffner SM, Mitchell BD, et al. Predicting diabetes: moving beyond impaired glucose tolerance. Diabetes 1993; 42: 706-14. http://dx.doi.org/10.2337/diab.42.5.706 DOI: https://doi.org/10.2337/diabetes.42.5.706

Abdul-Ghani MA, Lyssenko V, Tuomi T, DeFronzo RA, Groop L. Fasting Versus Postload Plasma Glucose Concentration and the Risk for Future Type 2 Diabetes Results from the Botnia Study. Diabetes Care 2009; 32: 281-6. http://dx.doi.org/10.2337/dc08-1264 DOI: https://doi.org/10.2337/dc08-1264

Kanaya AM, Fyr CLW, De Rekeneire N, Shorr RI, Schwartz AV, Goodpaster BH, et al. Predicting the Development of Diabetes in Older Adults The derivation and validation of a prediction rule. Diabetes Care 2005; 28: 404-8. http://dx.doi.org/10.2337/diacare.28.2.404 DOI: https://doi.org/10.2337/diacare.28.2.404

Adhikari P, Pathak R, Kotian S. Validation of the MDRF-Indian Diabetes Risk Score (IDRS) in another South Indian Population through the Boloor Diabetes Study (BDS). JAPI 2010; 50: 434-6.

Mohan V, Deepa R, Deepa M, Somannavar S, Datta M. A simplified Indian Diabetes Risk Score for screening for undiagnosed diabetic subjects. Journal of the Association of Physicians of India 2005; 53: 759-63.

Akyil RC, Miloglu O, Olgun N, Bayrakdar IS. A comparison of three different diabetes screening methods among dental patients in Turkey. Pakistan journal of medical sciences 2014; 30: 65.

Al Khalaf M, Eid M, Najjar H, Alhajry K, Doi S, Thalib L. Home Eastern Mediterranean Health Journal| Past issues| Volume 16, 2010| Volume 16, issue 7| Screening for diabetes in Kuwait and evaluation of risk scores. EMHJ 2010; 16: 725-31. DOI: https://doi.org/10.26719/2010.16.7.725

Herman WH, Smith PJ, Thompson TJ, Engelgau MM, Aubert RE. A new and simple questionnaire to identify people at increased risk for undiagnosed diabetes. Diabetes Care 1995; 18: 382-7. http://dx.doi.org/10.2337/diacare.18.3.382 DOI: https://doi.org/10.2337/diacare.18.3.382

Baan CA, Ruige JB, Stolk RP, Witteman J, Dekker JM, Heine RJ, et al. Performance of a predictive model to identify undiagnosed diabetes in a health care setting. Diabetes Care 1999; 22: 213-9. http://dx.doi.org/10.2337/diacare.22.2.213 DOI: https://doi.org/10.2337/diacare.22.2.213

Griffin S, Little P, Hales C, Kinmonth A, Wareham N. Diabetes risk score: towards earlier detection of type 2 diabetes in general practice. Diabetes Metab Res Rev 2000; 16: 164-71. http://dx.doi.org/10.1002/1520-7560(200005/06)16:3<164::AID-DMRR103>3.0.CO;2-R DOI: https://doi.org/10.1002/1520-7560(200005/06)16:3<164::AID-DMRR103>3.0.CO;2-R

Glümer C, Carstensen B, Sandbæk A, Lauritzen T, Jørgensen T, Borch-Johnsen K. A Danish Diabetes Risk Score for Targeted Screening The Inter99 study. Diabetes Care 2004; 27: 727-33. http://dx.doi.org/10.2337/diacare.27.3.727 DOI: https://doi.org/10.2337/diacare.27.3.727

Aekplakorn W, Bunnag P, Woodward M, Sritara P, Cheepudomwit S, Yamwong S, et al. A risk score for predicting incident diabetes in the Thai population. Diabetes Care 2006; 29: 1872-7. http://dx.doi.org/10.2337/dc05-2141 DOI: https://doi.org/10.2337/dc05-2141

Al-Lawati J, Tuomilehto J. Diabetes risk score in Oman: a tool to identify prevalent type 2 diabetes among Arabs of the Middle East. Diabetes Res Clin Pract 2007; 77: 438-44. http://dx.doi.org/10.1016/j.diabres.2007.01.013 DOI: https://doi.org/10.1016/j.diabres.2007.01.013

Alssema M, Newson RS, Bakker SJ, Stehouwer CD, Heymans MW, Nijpels G, et al. One risk assessment tool for cardiovascular disease, type 2 diabetes, and chronic kidney disease. Diabetes Care 2012; 35: 741-8. http://dx.doi.org/10.2337/dc11-1417 DOI: https://doi.org/10.2337/dc11-1417

Bang H, Edwards AM, Bomback AS, Ballantyne CM, Brillon D, Callahan MA, et al. Development and validation of a patient self-assessment score for diabetes risk. Annals of internal medicine 2009; 151: 775-83. http://dx.doi.org/10.7326/0003-4819-151-11-200912010-00005 DOI: https://doi.org/10.7326/0003-4819-151-11-200912010-00005

Bergmann A, Li J, Wang L, Schulze J, Bornstein S, Schwarz P. A simplified Finnish diabetes risk score to predict type 2 diabetes risk and disease evolution in a German population. Hormone and metabolic research 2007; 39: 677-82. http://dx.doi.org/10.1055/s-2007-985353 DOI: https://doi.org/10.1055/s-2007-985353

Bhadoria AS, Kasar PK, Toppo NA. Validation of Indian Diabetic Risk Score in Diagnosing Type 2 Diabetes Mellitus Against High Fasting Blood Sugar Levels among Adult Population of Central India. Biomedical journal 2014. DOI: https://doi.org/10.4103/2319-4170.143508

Bozorgmanesh M, Hadaegh F, Azizi F. Transportability of the updated diabetes prediction model from Atherosclerosis Risk in Communities Study to a Middle Eastern adult population: community-based cohort study. Acta diabetologica 2013; 50: 175-81. http://dx.doi.org/10.1007/s00592-010-0241-1 DOI: https://doi.org/10.1007/s00592-010-0241-1

Bozorgmanesh M, Hadaegh F, Zabetian A, Azizi F. San Antonio heart study diabetes prediction model applicable to a Middle Eastern population? Tehran glucose and lipid study. Int J Public Health 2010; 55: 315-23. http://dx.doi.org/10.1007/s00038-010-0130-y DOI: https://doi.org/10.1007/s00038-010-0130-y

Chaturvedi V, Reddy K, Prabhakaran D, Jeemon P, Ramakrishnan L, Shah P, et al. Development of a clinical risk score in predicting undiagnosed diabetes in urban Asian Indian adults: a population-based study. CVD prevention and control 2008; 3: 141-51. http://dx.doi.org/10.1016/j.cvdpc.2008.07.002 DOI: https://doi.org/10.1016/j.cvdpc.2008.07.002

Cameron A, Zimmet P, Soderberg S, Alberti K, Sicree R, Tuomilehto J, et al. The metabolic syndrome as a predictor of incident diabetes mellitus in Mauritius. Diabetic medicine 2007; 24: 1460-9. http://dx.doi.org/10.1111/j.1464-5491.2007.02288.x DOI: https://doi.org/10.1111/j.1464-5491.2007.02288.x

Cameron A, Magliano D, Zimmet P, Welborn T, Colagiuri S, Tonkin A, et al. The metabolic syndrome as a tool for predicting future diabetes: the AusDiab study. J Intern Med 2008; 264: 177-86. http://dx.doi.org/10.1111/j.1365-2796.2008.01935.x DOI: https://doi.org/10.1111/j.1365-2796.2008.01935.x

Chien K, Cai T, Hsu H, Su T, Chang W, Chen M, et al. A prediction model for type 2 diabetes risk among Chinese people. Diabetologia 2009; 52: 443-50. http://dx.doi.org/10.1007/s00125-008-1232-4 DOI: https://doi.org/10.1007/s00125-008-1232-4

Farran B, Channanath AM, Behbehani K, Thanaraj TA. Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and validation using national health data from Kuwait—a cohort study. BMJ Open 2013; 3: e002457. http://dx.doi.org/10.1136/bmjopen-2012-002457 DOI: https://doi.org/10.1136/bmjopen-2012-002457

Franciosi M, De Berardis G, Rossi MC, Sacco M, Belfiglio M, Pellegrini F, et al. Use of the diabetes risk score for opportunistic screening of undiagnosed diabetes and impaired glucose tolerance the IGLOO (Impaired Glucose Tolerance and Long-Term Outcomes Observational) study. Diabetes Care 2005; 28: 1187-94. http://dx.doi.org/10.2337/diacare.28.5.1187 DOI: https://doi.org/10.2337/diacare.28.5.1187

Gao W, Dong Y, Pang Z, Nan H, Wang S, Ren J, et al. A simple Chinese risk score for undiagnosed diabetes. Diabetic Medicine 2010; 27: 274-81. http://dx.doi.org/10.1111/j.1464-5491.2010.02943.x DOI: https://doi.org/10.1111/j.1464-5491.2010.02943.x

Ramachandran A, Snehalatha C, Vijay V, Wareham N, Colagiuri S. Derivation and validation of diabetes risk score for urban Asian Indians. Diabetes Res Clin Pract 2005; 70: 63-70. http://dx.doi.org/10.1016/j.diabres.2005.02.016 DOI: https://doi.org/10.1016/j.diabres.2005.02.016

Ginde AA, Delaney KE, Lieberman RM, Vanderweil SG, Camargo CA. Estimated risk for undiagnosed diabetes in the emergency department: a multicenter survey. Academic Emergency Medicine 2007; 14: 492-5. http://dx.doi.org/10.1111/j.1553-2712.2007.tb01815.x DOI: https://doi.org/10.1111/j.1553-2712.2007.tb01815.x

Glümer C, Borch‐Johnsen K, Colagiuri S. Can a screening programme for diabetes be applied to another population? Diabetic medicine 2005; 22: 1234-8. http://dx.doi.org/10.1111/j.1464-5491.2005.01641.x DOI: https://doi.org/10.1111/j.1464-5491.2005.01641.x

Glümer C, Vistisen D, Borch-Johnsen K, Colagiuri S. Risk scores for type 2 diabetes can be applied in some populations but not all. Diabetes Care 2006; 29: 410-4. http://dx.doi.org/10.2337/diacare.29.02.06.dc05-0945 DOI: https://doi.org/10.2337/diacare.29.02.06.dc05-0945

Gray L, Taub N, Khunti K, Gardiner E, Hiles S, Webb D, et al. The Leicester Risk Assessment score for detecting undiagnosed type 2 diabetes and impaired glucose regulation for use in a multiethnic UK setting. Diabetic Medicine 2010; 27: 887-95. http://dx.doi.org/10.1111/j.1464-5491.2010.03037.x DOI: https://doi.org/10.1111/j.1464-5491.2010.03037.x

Gray L, Davies M, Hiles S, Taub N, Webb D, Srinivasan B, et al. Detection of impaired glucose regulation and/or type 2 diabetes mellitus, using primary care electronic data, in a multiethnic UK community setting. Diabetologia 2012; 55: 959-66. http://dx.doi.org/10.1007/s00125-011-2432-x DOI: https://doi.org/10.1007/s00125-011-2432-x

Gray L, Khunti K, Wilmot E, Yates T, Davies M. External validation of two diabetes risk scores in a young UK South Asian population. Diabetes Res Clin Pract 2014; 104: 451-8. http://dx.doi.org/10.1016/j.diabres.2014.03.018 DOI: https://doi.org/10.1016/j.diabres.2014.03.018

Guasch-Ferré M, Bulló M, Costa B, Martínez-Gonzalez MÁ, Ibarrola-Jurado N, Estruch R, et al. A risk score to predict type 2 diabetes mellitus in an elderly Spanish Mediterranean population at high cardiovascular risk. PLoS One 2012; 7: e33437. http://dx.doi.org/10.1371/journal.pone.0033437 DOI: https://doi.org/10.1371/journal.pone.0033437

Guerrero-Romero F, Rodríguez-Morán M. Validation of an instrument for screening cases of type 2 diabetes and monitoring at-risk individuals in Mexico. Revista Panamericana de Salud Pública 2010; 27: 181-6. http://dx.doi.org/10.1590/S1020-49892010000300005 DOI: https://doi.org/10.1590/S1020-49892010000300005

Hanley AJ, Festa A, D’Agostino RB, Wagenknecht LE, Savage PJ, Tracy RP, et al. Metabolic and inflammation variable clusters and prediction of type 2 diabetes factor analysis using directly measured insulin sensitivity. Diabetes 2004; 53: 1773-81. http://dx.doi.org/10.2337/diabetes.53.7.1773 DOI: https://doi.org/10.2337/diabetes.53.7.1773

He S, Chen X, Cui K, Peng Y, Liu K, Lv Z, et al. Validity evaluation of recently published diabetes risk scoring models in a general Chinese population. Diabetes Res Clin Pract 2012; 95: 291-8. http://dx.doi.org/10.1016/j.diabres.2011.10.039 DOI: https://doi.org/10.1016/j.diabres.2011.10.039

Heianza Y, Arase Y, Saito K, Hsieh SD, Tsuji H, Kodama S, et al. Development of a screening score for undiagnosed diabetes and its application in estimating absolute risk of future type 2 diabetes in Japan: Toranomon Hospital Health Management Center Study 10 (TOPICS 10). The Journal of Clinical Endocrinology & Metabolism 2013; 98: 1051-60. http://dx.doi.org/10.1210/jc.2012-3092 DOI: https://doi.org/10.1210/jc.2012-3092

Heldgaard PE, Griffin S. Routinely collected general practice data aids identification of people with hyperglycaemia and metabolic syndrome. Diabetic medicine 2006; 23: 996-1002. http://dx.doi.org/10.1111/j.1464-5491.2006.01929.x DOI: https://doi.org/10.1111/j.1464-5491.2006.01929.x

Keesukphan P, Chanprasertyothin S, Ongphiphadhanakul B, Puavilai G. The development and validation of a diabetes risk score for high-risk Thai adults. Journal-Medical Association of Thailand 2007; 90: 149.

Schmidt MI, Duncan BB, Bang H, Pankow JS, Ballantyne CM, Golden SH, et al. Identifying Individuals at High Risk for Diabetes The Atherosclerosis Risk in Communities study. Diabetes care 2005; 28: 2013-8. http://dx.doi.org/10.2337/diacare.28.8.2013 DOI: https://doi.org/10.2337/diacare.28.8.2013

Ko G, So W, Tong P, Ma R, Kong A, Ozaki R, et al. A simple risk score to identify Southern Chinese at high risk for diabetes. Diabetic Medicine 2010; 27: 644-9. http://dx.doi.org/10.1111/j.1464-5491.2010.02993.x DOI: https://doi.org/10.1111/j.1464-5491.2010.02993.x

Ku G, Kegels G. The performance of the Finnish Diabetes Risk Score, a modified Finnish Diabetes Risk Score and a simplified Finnish Diabetes Risk Score in community-based cross-sectional screening of undiagnosed type 2 diabetes in the Philippines. Primary care diabetes 2013; 7: 249-59. http://dx.doi.org/10.1016/j.pcd.2013.07.004 DOI: https://doi.org/10.1016/j.pcd.2013.07.004

Lee Y-h, Bang H, Kim HC, Kim HM, Park SW, Kim DJ. A Simple Screening Score for Diabetes for the Korean Population Development, validation, and comparison with other scores. Diabetes Care 2012; 35: 1723-30. http://dx.doi.org/10.2337/dc11-2347 DOI: https://doi.org/10.2337/dc11-2347

Li J, Bornstein SR, Landgraf R, Schwarz PE. Validation of a simple clinical diabetes prediction model in a middle-aged, white, German population. Arch Intern Med 2007; 167: 2528-9. http://dx.doi.org/10.1001/archinte.167.22.2528-c DOI: https://doi.org/10.1001/archinte.167.22.2528-c

Li J, Bergmann A, Reimann M, Bornstein S, Schwarz P. A more simplified Finnish diabetes risk score for opportunistic screening of undiagnosed type 2 diabetes in a German population with a family history of the metabolic syndrome. Hormone and metabolic research 2009; 41: 98-103. http://dx.doi.org/10.1055/s-0028-1087191 DOI: https://doi.org/10.1055/s-0028-1087191

Li C-I, Chien L, Liu C-S, Lin W-Y, Lai M-M, Lee C-C, et al. Prospective Validation of American Diabetes Association Risk Tool for Predicting Pre-Diabetes and Diabetes in Taiwan–Taichung Community Health Study. PLoS One 2011; 6: e25906. DOI: https://doi.org/10.1371/journal.pone.0025906

Association AD. Screening for type 2 diabetes. Diabetes Care 2004; 27: S11. DOI: https://doi.org/10.2337/diacare.27.2007.S11

Lin J-W, Chang Y-C, Li H-Y, Chien Y-F, Wu M-Y, Tsai R-Y, et al. Cross-sectional validation of diabetes risk scores for predicting diabetes, metabolic syndrome, and chronic kidney disease in Taiwanese. Diabetes Care 2009; 32: 2294-6. http://dx.doi.org/10.2337/dc09-0694 DOI: https://doi.org/10.2337/dc09-0694

Luo S, Han L, Zeng P, Chen F, Pan L, Wang S, et al. A Risk Assessment Model for Type 2 Diabetes in Chinese. PLoS One 2014; 9: e104046. http://dx.doi.org/10.1371/journal.pone.0104046 DOI: https://doi.org/10.1371/journal.pone.0104046

Liu M, Pan C, Jin M. A Chinese diabetes risk score for screening of undiagnosed diabetes and abnormal glucose tolerance. Diabetes technology & therapeutics 2011; 13: 501-7. http://dx.doi.org/10.1089/dia.2010.0106 DOI: https://doi.org/10.1089/dia.2010.0106

Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. New England Journal of Medicine 2008; 359: 2220-32. http://dx.doi.org/10.1056/NEJMoa0801869 DOI: https://doi.org/10.1056/NEJMoa0801869

Lyssenko V, Jørgensen T, Gerwien RW, Hansen T, Rowe MW, McKenna MP, et al. Validation of a multi-marker model for the prediction of incident type 2 diabetes mellitus: Combined results of the Inter99 and Botnia studies. Diabetes and Vascular Disease Research 2012; 9: 59-67. http://dx.doi.org/10.1177/1479164111424762 DOI: https://doi.org/10.1177/1479164111424762

Kolberg JA, Jørgensen T, Gerwien RW, Hamren S, McKenna MP, Moler E, et al. Development of a type 2 diabetes risk model from a panel of serum biomarkers from the Inter99 cohort. Diabetes Care 2009; 32: 1207-12. http://dx.doi.org/10.2337/dc08-1935 DOI: https://doi.org/10.2337/dc08-1935

Mainous AG, Diaz VA, Everett CJ. Assessing risk for development of diabetes in young adults. The Annals of Family Medicine 2007; 5: 425-9. http://dx.doi.org/10.1370/afm.705 DOI: https://doi.org/10.1370/afm.705

Makrilakis K, Liatis S, Grammatikou S, Perrea D, Stathi C, Tsiligros P, et al. Validation of the Finnish diabetes risk score (FINDRISC) questionnaire for screening for undiagnosed type 2 diabetes, dysglycaemia and the metabolic syndrome in Greece. Diabetes Metab 2011; 37: 144-51. http://dx.doi.org/10.1016/j.diabet.2010.09.006 DOI: https://doi.org/10.1016/j.diabet.2010.09.006

McNeely MJ, Boyko EJ, Leonetti DL, Kahn SE, Fujimoto WY. Comparison of a clinical model, the oral glucose tolerance test, and fasting glucose for prediction of type 2 diabetes risk in Japanese Americans. Diabetes Care 2003; 26: 758-63. http://dx.doi.org/10.2337/diacare.26.3.758 DOI: https://doi.org/10.2337/diacare.26.3.758

Mühlenbruch K, Ludwig T, Jeppesen C, Joost H-G, Rath-mann W, Meisinger C, et al. Update of the German Diabetes Risk Score and external validation in the German MONICA/ KORA study. Diabetes Res Clin Pract 2014; 104: 459-66. http://dx.doi.org/10.1016/j.diabres.2014.03.013 DOI: https://doi.org/10.1016/j.diabres.2014.03.013

Park P, Griffin S, Sargeant L, Wareham N. The performance of a risk score in predicting undiagnosed hyperglycemia. Diabetes Care 2002; 25: 984-8. http://dx.doi.org/10.2337/diacare.25.6.984 DOI: https://doi.org/10.2337/diacare.25.6.984

Phillips CM, Kearney PM, McCarthy VJ, Harrington JM, Fitzgerald AP, Perry IJ. Comparison of Diabetes Risk Score Estimates and Cardiometabolic Risk Profiles in a Middle-Aged Irish Population. PLoS One 2013; 8: e78950. http://dx.doi.org/10.1371/journal.pone.0078950 DOI: https://doi.org/10.1371/journal.pone.0078950

Rahman M, Simmons RK, Harding A-H, Wareham NJ, Griffin SJ. A simple risk score identifies individuals at high risk of developing type 2 diabetes: a prospective cohort study. Fam Pract 2008; 25: 191-6. http://dx.doi.org/10.1093/fampra/cmn024 DOI: https://doi.org/10.1093/fampra/cmn024

Rathmann W, Martin S, Haastert B, Icks A, Holle R, Löwel H, et al. Performance of screening questionnaires and risk scores for undiagnosed diabetes: the KORA Survey 2000. Arch Intern Med 2005; 165: 436-41. http://dx.doi.org/10.1001/archinte.165.4.436 DOI: https://doi.org/10.1001/archinte.165.4.436

Riaz M, Basit A, Hydrie MZI, Shaheen F, Hussain A, Hakeem R, et al. Risk assessment of Pakistani individuals for diabetes (RAPID). Primary care diabetes 2012; 6: 297-302. http://dx.doi.org/10.1016/j.pcd.2012.04.002 DOI: https://doi.org/10.1016/j.pcd.2012.04.002

Rolka DB, Narayan KV, Thompson TJ, Goldman D, Lindenmayer J, Alich K, et al. Performance of recommended screening tests for undiagnosed diabetes and dysglycemia. Diabetes Care 2001; 24: 1899-903. http://dx.doi.org/10.2337/diacare.24.11.1899 DOI: https://doi.org/10.2337/diacare.24.11.1899

Rowe MW, Bergman RN, Wagenknecht LE, Kolberg JA. Performance of a multi-marker Diabetes Risk Score in the Insulin Resistance Atherosclerosis Study (IRAS), a multi-ethnic US cohort. Diabetes Metab Res Rev 2012; 28: 519-26. http://dx.doi.org/10.1002/dmrr.2305 DOI: https://doi.org/10.1002/dmrr.2305

Ruige JB, de Neeling JND, Kostense PJ, Bouter LM, Heine RJ. Performance of an NIDDM screening questionnaire based on symptoms and risk factors. Diabetes Care 1997; 20: 491-6. http://dx.doi.org/10.2337/diacare.20.4.491 DOI: https://doi.org/10.2337/diacare.20.4.491

Schmid R, Vollenweider P, Bastardot F, Waeber G, Marques-Vidal P. Validation of 7 type 2 diabetes mellitus risk scores in a population-based cohort: CoLaus study. Archives of internal medicine 2012; 172: 188-9. http://dx.doi.org/10.1001/archinte.172.2.188 DOI: https://doi.org/10.1001/archinte.172.2.188

Schmid R, Vollenweider P, Bastardot F, Vaucher J, Waeber G, Marques-Vidal P. Current genetic data do not improve the prediction of type 2 diabetes mellitus: the CoLaus study. The Journal of Clinical Endocrinology & Metabolism 2012; 97: E1338-E41. http://dx.doi.org/10.1210/jc.2011-3412 DOI: https://doi.org/10.1210/jc.2011-3412

Spijkerman AM, Yuyun MF, Griffin SJ, Dekker JM, Nijpels G, Wareham NJ. The Performance of a Risk Score as a Screening Test for Undiagnosed Hyperglycemia in Ethnic Minority Groups Data from the 1999 Health Survey for England. Diabetes Care 2004; 27: 116-22. http://dx.doi.org/10.2337/diacare.27.1.116 DOI: https://doi.org/10.2337/diacare.27.1.116

Stern MP, Williams K, González-Villalpando C, Hunt KJ, Haffner SM. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care 2004; 27: 2676-81. http://dx.doi.org/10.2337/diacare.27.11.2676 DOI: https://doi.org/10.2337/diacare.27.11.2676

Stern M, Williams K, Eddy D, Kahn R. Validation of prediction of diabetes by the Archimedes model and comparison with other predicting models. Diabetes Care 2008; 31: 1670-1. http://dx.doi.org/10.2337/dc08-0521 DOI: https://doi.org/10.2337/dc08-0521

Sun F, Tao Q, Zhan S. An accurate risk score for estimation 5-year risk of type 2 diabetes based on a health screening population in Taiwan. Diabetes Res Clin Pract 2009; 85: 228-34. http://dx.doi.org/10.1016/j.diabres.2009.05.005 DOI: https://doi.org/10.1016/j.diabres.2009.05.005

Tabaei BP, Herman WH. A multivariate logistic regression equation to screen for diabetes development and validation. Diabetes Care 2002; 25: 1999-2003. http://dx.doi.org/10.2337/diacare.25.11.1999 DOI: https://doi.org/10.2337/diacare.25.11.1999

Talmud PJ, Hingorani AD, Cooper JA, Marmot MG, Brunner EJ, Kumari M, et al. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. Bmj 2010; 340. http://dx.doi.org/10.1136/bmj.b4838 DOI: https://doi.org/10.1136/bmj.b4838

Tankova T, Chakarova N, Atanassova I, Dakovska L. Evalu-ation of the Finnish Diabetes Risk Score as a screening tool for impaired fasting glucose, impaired glucose tolerance and undetected diabetes. Diabetes Res Clin Pract 2011; 92: 46-52. http://dx.doi.org/10.1016/j.diabres.2010.12.020 DOI: https://doi.org/10.1016/j.diabres.2010.12.020

Tuomilehto J, Lindström J, Hellmich M, Lehmacher W, Westermeier T, Evers T, et al. Development and validation of a risk-score model for subjects with impaired glucose tolerance for the assessment of the risk of type 2 diabetes mellitus—The STOP-NIDDM risk-score. Diabetes Res Clin Pract 2010; 87: 267-74. http://dx.doi.org/10.1016/j.diabres.2009.11.011 DOI: https://doi.org/10.1016/j.diabres.2009.11.011

Urdea M, Kolberg J, Wilber J, Gerwien R, Moler E, Rowe M, et al. Validation of a multimarker model for assessing risk of type 2 diabetes from a five-year prospective study of 6784 Danish people (Inter99). J Diabetes Sci Technol 2009; 3: 748-55. http://dx.doi.org/10.1177/193229680900300422 DOI: https://doi.org/10.1177/193229680900300422

Wannamethee SG, Shaper AG, Lennon L, Morris RW. Metabolic syndrome vs Framingham Risk Score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch Intern Med 2005; 165: 2644-50. http://dx.doi.org/10.1001/archinte.165.22.2644 DOI: https://doi.org/10.1001/archinte.165.22.2644

Witte D, Shipley M, Marmot M, Brunner E. Performance of existing risk scores in screening for undiagnosed diabetes: an external validation study. Diabetic Medicine 2010; 27: 46-53. http://dx.doi.org/10.1111/j.1464-5491.2009.02891.x DOI: https://doi.org/10.1111/j.1464-5491.2009.02891.x

Zhang L, Zhang Z, Zhang Y, Hu G, Chen L. Evaluation of Finnish Diabetes Risk Score in Screening Undiagnosed Diabetes and Prediabetes among US Adults by Gender and Race: NHANES 1999-2010. PLoS One 2014; 9: e97865. http://dx.doi.org/10.1371/journal.pone.0097865 DOI: https://doi.org/10.1371/journal.pone.0097865

Zhou X, Qiao Q, Ji L, Ning F, Yang W, Weng J, et al. Nonlaboratory-Based Risk Assessment Algorithm for Undiagnosed Type 2 Diabetes Developed on a Nation-Wide Diabetes Survey. Diabetes Care 2013; 36: 3944-52. http://dx.doi.org/10.2337/dc13-0593 DOI: https://doi.org/10.2337/dc13-0593

Downloads

Published

2015-11-02

How to Cite

Masconi, K. L., Matsha, T. E., Erasmus, R. T., & Kengne, A. P. (2015). Recalibration in Validation Studies of Diabetes Risk Prediction Models: A Systematic Review . International Journal of Statistics in Medical Research, 4(4), 347–369. https://doi.org/10.6000/1929-6029.2015.04.04.5

Issue

Section

General Articles