Non-Homogeneous Poisson Process to Model Seasonal Events: Application to the Health Diseases

Authors

  • María Victoria Cifuentes-Amado Universidad Nacional de Colombia, Bogotá-Colombia
  • Edilberto Cepeda-Cuervo Universidad Nacional de Colombia, Bogotá-Colombia

DOI:

https://doi.org/10.6000/1929-6029.2015.04.04.4

Keywords:

Hospital admissions, seasonal disease behavior, non-homogeneous Poisson processes, dengue infection, cyclical process

Abstract

The daily number of hospital admissions due to mosquito-borne diseases can vary greatly. This variability can be explained by different factors such as season of the year, temperature and pollution levels, among others. In this paper, we propose a new class of non-homogeneous Poisson processes which incorporates seasonality factors to more realistically fit data related to rare events, and in particular we show how the modifications applied to the special NHPP intensity function improve the analysis and fit of daily hospital admissions, due to dengue in Ribeirão Preto, São Paulo state, Brazil.

References

Garrido J, Lu Y. On double periodic non-homogeneous Poisson processes. Bulletin of the Association of Swiss Actuaries 2004; 2: 195-212.

Krumin M, Shoham S. Generation of spike trains with controlled auto- and cross-correlation functions. Neural Comput 2009; 21: 1642-1664 http://dx.doi.org/10.1162/neco.2009.08-08-847 DOI: https://doi.org/10.1162/neco.2009.08-08-847

Lando D. On Cox processes and credit risky securities. Review of Derivatives research 1998; 2(2-3): 99-120. DOI: https://doi.org/10.1007/BF01531332

Müller-Pebody B, et al. Modelling hospital admissions for lower respiratory tract infections in the elderly in England. Epidemiology and Infection 2006; 134.06: 1150-1157. http://dx.doi.org/10.1017/S0950268806006376 DOI: https://doi.org/10.1017/S0950268806006376

Burnett Richard T, et al. Effects of low ambient levels of ozone and sulfates on the frequency of respiratory admissions to Ontario hospitals. Environmental Research 1994; 65.2: 172-194. http://dx.doi.org/10.1006/enrs.1994.1030 DOI: https://doi.org/10.1006/enrs.1994.1030

Pievatolo A, Ruggeri F. Bayesian reliability analysis of complex repairable systems. Appl Stoch Models Bus Ind 2004; 20: 253-264. http://dx.doi.org/10.1002/asmb.522 DOI: https://doi.org/10.1002/asmb.522

Achcar JA, Cepeda-Cuervo E, Martinez EZ. Use of Non- Homogeneous Poisson Processes in the Modeling of Hospital over Admissions in Ribeirão Preto and Region, Brazil: An Application to Respiratory Diseases. J Biomet Biostat 2012; 3: 131. http://dx.doi.org/10.4172/2155-6180.1000131 DOI: https://doi.org/10.4172/2155-6180.1000131

Musa J, Okumoto K. A logarithmic Poisson execution time model for software reliability measurement. Proceedings of the 7th international conference on Software engineering. IEEE Press 1984.

Goel AL, Okumoto K. An analysis of recurrent software failures on a real-time control system. Proceedings of ACM Conference 1978. DOI: https://doi.org/10.1145/800127.804160

Cox D, Lewis P. Statistical analysis of series of events. Methuen & Co Ltda, UK 1966. DOI: https://doi.org/10.1007/978-94-011-7801-3

Kuo L, Yang T. Bayesian computation for nonhomogeneous Poisson process in software reliability. Journal of the American Statistical Association 1996; 91: 763-773. http://dx.doi.org/10.1080/01621459.1996.10476944 DOI: https://doi.org/10.1080/01621459.1996.10476944

Ramirez-Cid J, Achcar JA. Bayesian inference for non-homogeneous Poisson process in software reliability models. Comput Stat Data Anal 1999; 32: 147-159. http://dx.doi.org/10.1016/S0167-9473(99)00028-6 DOI: https://doi.org/10.1016/S0167-9473(99)00028-6

Lunn DJ, Thomas A, Best N, Spiegelhalter D. WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing 2000; 10: 325-337. http://dx.doi.org/10.1023/A:1008929526011 DOI: https://doi.org/10.1023/A:1008929526011

Chib S, Greenberg E. Understanding the metropolis-hastings algorithm. The American Statistician 1995; 49.4: 327-335. DOI: https://doi.org/10.1080/00031305.1995.10476177

Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 1990; 85.410: 398-409. http://dx.doi.org/10.1080/01621459.1990.10476213 DOI: https://doi.org/10.1080/01621459.1990.10476213

Smith AFM, Roberts GO. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J R Stat Soc Series B Stat Methodol 1993; 3-23. DOI: https://doi.org/10.1111/j.2517-6161.1993.tb01466.x

Kuo L, Yang T. Bayesian computation for the superposition of nonhomogeneous Poisson process. Can J Stat 1999; 27: 547-556. http://dx.doi.org/10.2307/3316110 DOI: https://doi.org/10.2307/3316110

Downloads

Published

2015-11-02

How to Cite

Cifuentes-Amado, M. V., & Cepeda-Cuervo, E. (2015). Non-Homogeneous Poisson Process to Model Seasonal Events: Application to the Health Diseases. International Journal of Statistics in Medical Research, 4(4), 337–346. https://doi.org/10.6000/1929-6029.2015.04.04.4

Issue

Section

General Articles