Predicting Risks of Increased Morbidity among Atrial Fibrillation Patients using Consumption Classes

Authors

  • Peter Congdon School of Geography and Life Sciences Institute, Washington, DC 20036, USA
  • Qiang Cai National Minority Quality Forum, 1200 New Hampshire Avenue, Washington, DC 20036, USA
  • Gary Puckrein National Minority Quality Forum, 1200 New Hampshire Avenue, Washington, DC 20036, USA
  • Liou Xu National Minority Quality Forum, 1200 New Hampshire Avenue, Washington, DC 20036, USA

DOI:

https://doi.org/10.6000/1929-6029.2014.03.03.4

Keywords:

Morbidity, Risk scores, Latent variable, Atrial fibrillation, Consumption class

Abstract

Background: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia. Predicting the risk of complications, or associated increases in healthcare costs, among AF patients is important for effective health care management.

Methods: A bivariate regression model including a latent morbidity index is used to predict both risk of transition to higher health costs, and mortality risk over a single year. A risk scoring algorithm for predicting transition to higher cost levels is then set out which incorporates the most significant risk factors from the regression.

Results: The regression analysis shows that in addition to age and comorbidities, baseline consumption category, ethnic group, metropolitan residence and Warfarin adherence are also significant influences on progression to increased health consumption, and relevant to assessing risk. The resulting risk scoring algorithm produces a higher AUC than the widely applied CHADS2 score.

Conclusions: The utility of a bivariate regression method with a latent morbidity index for predicting transition to worsening health status among AF patients is demonstrated. A risk scoring system based on this method outperforms an established risk score.

Author Biography

Peter Congdon, School of Geography and Life Sciences Institute, Washington, DC 20036, USA

Life Sciences Institute

References

Lip G, Lim H. Atrial fibrillation and stroke prevention. Lancet Neurol 2007; 6: 981-93. http://dx.doi.org/10.1016/S1474-4422(07)70264-8 DOI: https://doi.org/10.1016/S1474-4422(07)70264-8

Benjamin E, Wolf P, D'Agostino R. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 1998; 98: 946-52. http://dx.doi.org/10.1161/01.CIR.98.10.946 DOI: https://doi.org/10.1161/01.CIR.98.10.946

Caballero A, Davidson J, Elmi A. Previously unrecognized trends in diabetes consumption clusters in Medicare. Am J Manag Care 2013; 19: 541-8. http://www.ajmc.com/ publications/issue/2013/2013-1-vol19-n7/Previously-Unrecognized-Trends-in-Diabetes-Consumption-Clusters-in-Medicare

Hobbs F, Roalfe A, Lip G. Performance of stroke risk scores in older people with atrial fibrillation not taking warfarin: comparative cohort study from BAFTA trial. BMJ 2011; 342: d3653. http://dx.doi.org/10.1136/bmj.d3653 DOI: https://doi.org/10.1136/bmj.d3653

Paoletti P, Bartolini S, Pieragnoli P. CHADS2 and CHA2DS2-VASc scores to predict morbidity and mortality in heart failure patients candidates to cardiac resynchronization therapy. Europace 2013. [Epub ahead of print] http://europace. oxfordjournals.org/content/16/1/71.short?rss=1 DOI: https://doi.org/10.1093/europace/eut190

Naccarelli G, Panaccio M, Cummins G, Tu N. CHADS2 and CHA2DS2-VASc risk factors to predict first cardiovascular hospitalization among atrial fibrillation/atrial flutter patients. Am J Cardiol 2012; 109: 1526-33. http://dx.doi.org/10.1016/j.amjcard.2012.01.371 DOI: https://doi.org/10.1016/j.amjcard.2012.01.371

Gage B, Waterman A, Shannon W. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. J Amer Med Assoc 2001; 285: 2864-70. http://dx.doi.org/10.1001/jama.285.22.2864 DOI: https://doi.org/10.1001/jama.285.22.2864

Lip G, Nieuwlaat R, Pisters R, Lane DA, Crijns H. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 2010; 137: 263-72. http://dx.doi.org/10.1378/chest.09-1584 DOI: https://doi.org/10.1378/chest.09-1584

Rabe-Hesketh S, Skrondal A. Classical latent variable models for medical research. Stat Methods Med Res 2008; 17: 5-32. http://dx.doi.org/10.1177/0962280207081236 DOI: https://doi.org/10.1177/0962280207081236

Hunt K, Walsh B, Voegeli D, Roberts H. Reducing avoidable hospital admission in older people: health status, frailty and predicting risk of ill-defined conditions diagnoses in older people admitted with collapse. Arch Gerontol Geriatr 2013; 57: 172-6. http://dx.doi.org/10.1016/j.archger.2013.03.004 DOI: https://doi.org/10.1016/j.archger.2013.03.004

DeSalvo K, Fan V, McDonell M, Fihn S. Predicting mortality and healthcare utilization with a single question. Health Serv Res 2005; 40: 1234-46. http://dx.doi.org/10.1111/j.1475-6773.2005.00404.x DOI: https://doi.org/10.1111/j.1475-6773.2005.00404.x

Lunn D, Spiegelhalter D, Thomas A, Best N. The BUGS project: Evolution, critique and future directions. Stat Med 2009; 28: 3049-67. http://dx.doi.org/10.1002/sim.3680 DOI: https://doi.org/10.1002/sim.3680

Brooks S, Gelman A. General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 1998; 7: 434-45. http://www.tandfonline.com/doi/abs/10.1080/10618600.1998.10474787#.U0_8LFcmQ9Y DOI: https://doi.org/10.2307/1390675

Spiegelhalter D, Best N, Carlin B, Van Der Linde A. Bayesian measures of model complexity and fit. J Royal Statistical Society B 2002; 64: 583-639. http://dx.doi.org/10.1111/1467-9868.00353 DOI: https://doi.org/10.1111/1467-9868.00353

Lobo J, Jiménez‐Valverde A, Real R. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology Biogeog 2008; 17: 145-151. http://dx.doi.org/10.1111/j.1466-8238.2007.00358.x DOI: https://doi.org/10.1111/j.1466-8238.2007.00358.x

Cook N. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 2007; 115: 928-935. http://dx.doi.org/10.1161/CIRCULATIONAHA.106.672402 DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.672402

Wieand S, Gail M, James B, James K. A family of nonparametric statistics for comparing diagnostic markers with paired or unpaired data. Biometrika 1989; 76: 585-592. http://dx.doi.org/10.1093/biomet/76.3.585 DOI: https://doi.org/10.1093/biomet/76.3.585

Qin G, Hsu Y, Zhou X. New confidence intervals for the difference between two sensitivities at a fixed level of specificity. Statistics in Medicine 2006; 25: 3487-3502. http://dx.doi.org/10.1002/sim.2459 DOI: https://doi.org/10.1002/sim.2459

Pepe M, Longton G, Janes H. Estimation and comparison of receiver operating characteristic curves. Stata Journal 2009; 9: 1-16. http://www.stata-journal.com/article.html?article= st0154 DOI: https://doi.org/10.1177/1536867X0900900101

Noble D, Mathur R, Dent T. Risk models and scores for type 2 diabetes: systematic review. Brit Med J 2011; 343: d7163. http://dx.doi.org/10.1136/bmj.d7163 DOI: https://doi.org/10.1136/bmj.d7163

Philbin E, DiSalvo T. Prediction of hospital readmission for heart failure: development of a simple risk score based on administrative data. J Am Coll Cardiol 1999; 33: 1560-6. http://dx.doi.org/10.1016/S0735-1097(99)00059-5 DOI: https://doi.org/10.1016/S0735-1097(99)00059-5

Shen A, Yao J, Brar S, Jorgensen M, Chen W. Racial/ethnic differences in the risk of intracranial hemorrhage among patients with atrial fibrillation. J Am Coll Cardiol 2007; 50(4): 309-15. http://dx.doi.org/10.1016/j.jacc.2007.01.098 DOI: https://doi.org/10.1016/j.jacc.2007.01.098

Al-Khadra A, Salem D, Rand W. Warfarin anticoagulation and survival: a cohort analysis from the studies of left ventricular dysfunction. J Am Coll Cardiol 1998; 31: 749-53. http://dx.doi.org/10.1016/S0735-1097(98)00006-0 DOI: https://doi.org/10.1016/S0735-1097(97)00502-0

Andersson T, Magnuson A, Bryngelsson I. All-cause mortality in 272 186 patients hospitalized with incident atrial fibrillation 1995–2008: a Swedish nationwide long-term case–control study. Eur Heart J 2013. http://dx.doi.org/10.1093/eurheartj/ehs469 DOI: https://doi.org/10.1093/eurheartj/ehs469

Barrett T, Self W, Jenkins C. Predictors of regional variations in hospitalizations following emergency department visits for atrial fibrillation. Am J Cardiol 2013; 112: 1410-6. http://dx.doi.org/10.1016/j.amjcard.2013.07.005 DOI: https://doi.org/10.1016/j.amjcard.2013.07.005

Joynt K, Jha A. Who has higher readmission rates for heart failure, and why? Implications for efforts to improve care using financial incentives. Circ Cardiovasc Qual Outcomes 2011; 4: 53-59. http://dx.doi.org/10.1161/CIRCOUTCOMES.110.950964 DOI: https://doi.org/10.1161/CIRCOUTCOMES.110.950964

Ricketts T, Heaphy P. Hospitals in rural America. West J Med 2000; 173(6): 418-422. http://dx.doi.org/10.1136/ewjm.173.6.418 DOI: https://doi.org/10.1136/ewjm.173.6.418

American Hospitals Association. Opportunites and Challenges for Rural Hospitals in an Era of Health Reform. AHA, Chicago, 2011. http://aharesourcecenter.wordpress. com/2011/05/02/opportunites-and-challenges-for-rural-hospitals-in-an-era-of-health-reform/

Chan L, Hart L, Goodman D. Geographic access to health care for rural Medicare beneficiaries. J Rural Health 2006; 22: 140-6. http://dx.doi.org/10.1111/j.1748-0361.2006.00022.x DOI: https://doi.org/10.1111/j.1748-0361.2006.00022.x

Kassianos G, Arden C, Hogan S, Dew R, Fuat A. Current management of atrial fibrillation: an observational study in NHS primary care. BMJ Open 2013; 3(11): e003004. http://dx.doi.org/10.1136/bmjopen-2013-003004 DOI: https://doi.org/10.1136/bmjopen-2013-003004

Khan M, Raja S, Ibrahim M, Hammersely C. Prevalence and management of atrial fibrillation in primary care: a case study. Prim Health Care Res Dev 2014; 1-7. [Epub ahead of print]. http://dx.doi.org/10.1017/S1463423613000534 DOI: https://doi.org/10.1017/S1463423613000534

Lakshminarayan K, Solid C, Collins A. Atrial fibrillation and stroke in the general medicare population: a 10-year perspective (1992 to 2002). Stroke 2006; 37: 1969-74. http://dx.doi.org/10.1161/01.STR.0000230607.07928.17 DOI: https://doi.org/10.1161/01.STR.0000230607.07928.17

Downloads

Published

2014-08-05

How to Cite

Congdon, P., Cai, Q., Puckrein, G., & Xu, L. (2014). Predicting Risks of Increased Morbidity among Atrial Fibrillation Patients using Consumption Classes. International Journal of Statistics in Medical Research, 3(3), 248–256. https://doi.org/10.6000/1929-6029.2014.03.03.4

Issue

Section

General Articles