Hardy-Weinberg Equilibrium as Foundational

Authors

  • Alan E. Stark School of Mathematics and Statistics FO7, University of Sydney, NSW, 2006, Australia
  • Eugene Seneta School of Mathematics and Statistics FO7, University of Sydney, NSW, 2006, Australia

DOI:

https://doi.org/10.6000/1929-6029.2014.03.02.12

Keywords:

Hardy-Weinberg Equilibrium, Non-random Mating, Population Genetics Theory, Tay-Sachs disease, Mendel's First Law

Abstract

The Hardy-Weinberg Principle explains how random mating can produce and maintain a population in equilibrium, that is: with constant genotypic proportions. The Hardy-Weinberg formula is in constant use as a basis for developing population genetics theory. Here we give a complete description of a model which can sustain equilibrium but with a general mating system, thereby giving a much broader basis on which to develop population genetics. It was S. N. Bernstein who first showed how Mendel’s first law could be justified simply on the basis of observations of populations in equilibrium. We show how the model can be applied to exploring the change in incidence of a genetic disorder.

Author Biographies

Alan E. Stark, School of Mathematics and Statistics FO7, University of Sydney, NSW, 2006, Australia

School of Mathematics and Statistics FO7

Eugene Seneta, School of Mathematics and Statistics FO7, University of Sydney, NSW, 2006, Australia

School of Mathematics and Statistics FO7

References

Penrose LS. The Biology of Mental Defect. 4th ed. London: Sidgwick & Jackson 1972.

Hartl DL, Jones EW. Essential Genetics: A Genomics Perspective. 4th ed. Sudbury, Massachusetts: Jones and Bartlett Publishers 2006.

Edwards AWF, Hardy GH. (1908) and Hardy-Weinberg equilibrium. Genetics 2008; 179: 1143-50. http://dx.doi.org/10.1534/genetics.104.92940 DOI: https://doi.org/10.1534/genetics.104.92940

Mayo O. A century of Hardy-Weinberg equilibrium. Twin Res Hum Genet 2008; 11: 249-46. http://dx.doi.org/10.1375/twin.11.3.249 DOI: https://doi.org/10.1375/twin.11.3.249

Bernstein SN. Solution of a mathematical problem connected with the theory of heredity. Ann Math Stat 1942; 12: 53-61. http://dx.doi.org/10.1214/aoms/1177731642 DOI: https://doi.org/10.1214/aoms/1177731642

Seneta E. Sergei Natanovich Bernstein. In: Heyde CC, Seneta E, editors. Statisticians of the Centuries. New York: Springer 2001; pp. 339-342. http://dx.doi.org/10.1007/978-1-4613-0179-0_73 DOI: https://doi.org/10.1007/978-1-4613-0179-0_73

Stark A, Seneta E, On SN. Bernstein’s derivation of Mendel’s law and ‘rediscovery’ of the Hardy-Weinberg distribution. Genet Mol Biol 2012; 35: 388-94. http://dx.doi.org/10.1590/S1415-47572012005000025 DOI: https://doi.org/10.1590/S1415-47572012005000025

Stark AE. On extending the Hardy-Weinberg law. Genet Mol Biol 2007; 30: 664-66. http://dx.doi.org/10.1590/S1415-47572007000400026 DOI: https://doi.org/10.1590/S1415-47572007000400026

Stark AE, Seneta E. A reality check on Hardy-Weinberg. Twin Res Hum Genet 2013; 16: 782-89. http://dx.doi.org/10.1017/thg.2013.40 DOI: https://doi.org/10.1017/thg.2013.40

O’Brien JS. Five gangliosidoses. Lancet 1969; 2: 805. http://dx.doi.org/10.1016/S0140-6736(69)90524-8 DOI: https://doi.org/10.1016/S0140-6736(69)90524-8

Slome D. The genetic basis of amaurotic family idiocy. J Genet 1933; 27: 363-72, plus Appendix. DOI: https://doi.org/10.1007/BF02981749

Lewis R. Human Genetics: the Basics. London and New York: Routledge 2011. DOI: https://doi.org/10.4324/9780203840580

Westman JA. Medical Genetics for the Modern Clinician. Philadelphia: Lippincott Williams & Wilkins 2006.

Sebro R, Hoffmann TJ, Lange C, Rogus JJ, Risch NJ. Testing for non-random mating: evidence for ancestry-related assortative mating in the Framingham Heart Study. Genet Epidem 2010; 34: 674-79. http://dx.doi.org/10.1002/gepi.20528 DOI: https://doi.org/10.1002/gepi.20528

Downloads

Published

2014-05-14

How to Cite

Stark, A. E., & Seneta, E. (2014). Hardy-Weinberg Equilibrium as Foundational. International Journal of Statistics in Medical Research, 3(2), 198–202. https://doi.org/10.6000/1929-6029.2014.03.02.12

Issue

Section

General Articles