Modeling Survival After Diagnosis of a Specific Disease Based on Case Surveillance Data

Authors

  • Ruiguang Song Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
  • Gengsheng Qin Georgia State University, Atlanta, GA 30303, USA
  • Kathleen McDavid Harrison Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
  • Xinjian Zhang Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
  • H Irene Hall Centers for Disease Control and Prevention, Atlanta, GA 30333, USA

DOI:

https://doi.org/10.6000/1929-6029.2014.03.01.2

Keywords:

AIDS, Average years of life lost, HIV, Life expectancy, Mean survival time

Abstract

Motivated by a study assessing the impact of treatments on survival of AIDS (Acquired Immune Deficiency Syndrome) patients, we developed a semi-parametric method to estimate the life expectancy after diagnosis using data from case surveillance. With the proposed method, the life expectancy is estimated based on the traditional non-parametric life table method, but the age-specific death rates are estimated using a parametric model to derive more robust estimates from limited numbers of deaths by single year of age. The uncertainties associated with the semi-parametric estimates are provided. In addition, the life expectancy among people with the disease is compared with the life expectancy among those with similar demographic characteristics in the general population. The average years of life lost is used to measure the impact of the disease or the treatment on the survival after diagnosis. The trend of impact over time can be evaluated by the annual estimates of life expectancy and average years of life lost in the past.

References

Chiang CL. The life table and its applications. Malabar, Fla.: R.E. Krieger Pub. Co. 1984.

Brenner H, Gefeller O, Hakulinen T. Period analysis for up-to-date cancer survival data. Theory, empirical evaluation, computational realization and applications. Eur J Cancer 2004; 40: 326-35. http://dx.doi.org/10.1016/j.ejca.2003.10.013 DOI: https://doi.org/10.1016/j.ejca.2003.10.013

Brenner H, Hakulinen T. Up-to-date and precise estimates of cancer patient survival: model-based period analysis. Am J Epidemiol 2006; 164(7): 689-96. http://dx.doi.org/10.1093/aje/kwj243 DOI: https://doi.org/10.1093/aje/kwj243

Fang CT, Chang YY, Hsu HM, Twu SJ, Chen KT, Lin CC, et al. Life expectancy of patients with newly-diagnosed HIV infection in the era of highly active antiretroviral therapy. Quart J Med 2007; 100: 97-105. http://dx.doi.org/10.1093/qjmed/hcl141 DOI: https://doi.org/10.1093/qjmed/hcl141

Burnet NG, Jefferies SJ, Benson RJ, Hunt DP, Treasure FP. Years of life lost (YLL) from cancer is an important measure of population burden—and should be considered when allocating research funds. Br J Cancer 2005; 92: 241-45. DOI: https://doi.org/10.1038/sj.bjc.6602321

Centers for Disease Control and Prevention. HIV/AIDS Surveillance Report, 2009. Vol.21. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention 2011; pp. 34-37. Available from: http://www.cdc.gov/hiv/surveillance/resources/reports/2009report/index.htm

Longini IM, Clark WS, Byers RH, Ward JW, Darrow WW, Lemp GF, Hethcote HW. Statistical analysis of the stages of HIV infection using a Markov model. Statist Med 1989; 8: 831-843. http://dx.doi.org/10.1002/sim.4780080708 DOI: https://doi.org/10.1002/sim.4780080708

Longini IM, Clark WS, Gardner LI, Brundage JF. The dynamics of CD4+ T-lymphocyte decline in HIV-infected individuals: a Markov modeling approach. J Acquired Immune Deficiency Syndromes 1991; 4: 1141-47.

King JT, Justice AC, Roberts MS, Chang CH, Fusco JS. Long-term HIV/AIDS survival estimation in the highly active antiretroviral therapy era. Med Decis Making 2003; 23: 9-20. http://dx.doi.org/10.1177/0272989X02239652 DOI: https://doi.org/10.1177/0272989X02239652

Hall HI, McDavid K, Ling Q, Sloggett A. Determinants of progression to AIDS or death after HIV diagnosis, United States, 1996 to 2001. Ann Epidemiol 2006; 16: 824-33. http://dx.doi.org/10.1016/j.annepidem.2006.01.009 DOI: https://doi.org/10.1016/j.annepidem.2006.01.009

McDavid Harrison K, Ling Q, Song R, Hall HI. County-level socioeconomic status and survival after HIV diagnosis, United States. Ann Epidemiol 2008; 18: 919-27. http://dx.doi.org/10.1016/j.annepidem.2008.09.003 DOI: https://doi.org/10.1016/j.annepidem.2008.09.003

Bhaskaran K, Hamouda O, Sannes M, et al. for the CASCADE Collaboration. Changes in the risk of death after HIV seroconversion compared with mortality in the general population. JAMA 2008; 300: 51-59. http://dx.doi.org/10.1001/jama.300.1.51 DOI: https://doi.org/10.1001/jama.300.1.51

Goldstein ST, Zhou F, Hadler SC, Bell BP, Mast EE, Margolis HS. A mathematical model to estimate global hepatitis B disease burden and vaccination impact. Int J Epidemiol 2005; 34: 1329-39. http://dx.doi.org/10.1093/ije/dyi206 DOI: https://doi.org/10.1093/ije/dyi206

Oehlert GW. A note on the delta method. Am Statist 1992; 46: 27-29. DOI: https://doi.org/10.1080/00031305.1992.10475842

Karon JM, Devine OJ, Morgan WM. Predicting AIDS incidence by extrapolating from recent trends. In Mathematical and Statistical Approaches to AIDS Epidemiology, Castillo-Chavez C (ed.). Lecture Notes in Biomathematics, Berlin: Springer 1989; vol. 83: pp. 58-88. http://dx.doi.org/10.1007/978-3-642-93454-4_3 DOI: https://doi.org/10.1007/978-3-642-93454-4_3

Green TA. Using surveillance data to monitor trends in the AIDS epidemic. Statist Med 1998; 17: 143-154. http://dx.doi.org/10.1002/(SICI)1097-0258(19980130)17:2<143::AID-SIM757>3.0.CO;2-Y DOI: https://doi.org/10.1002/(SICI)1097-0258(19980130)17:2<143::AID-SIM757>3.0.CO;2-Y

Song R, Green TA. An Improved Approach to Accounting for Reporting Delay in Case Surveillance Systems. JP J Biostatist 2012; 7(1): 1-14.

Arias E. United States Life Tables. National Vital Statistics Reports; vol 59 no 9. Hyattsville, MD: National Center for Health Statistics 2007; Available from: http://www.cdc.gov/nchs/data/nvsr/nvsr59/nvsr59_09.pdf

Brenner H, Spix C. Combining cohort and period methods for retrospective time trend analyses of long-term cancer patient survival rates. Br J Cancer 2003; 89: 1260-65. http://dx.doi.org/10.1038/sj.bjc.6601295 DOI: https://doi.org/10.1038/sj.bjc.6601295

McDavid Harrison K,Song R, Zhang X. Life expectancy after HIV diagnosis based on national HIV surveillance data from 25 states, United States. J Acquired Immune Deficiency Syndromes 2010; 53(1): 124-30. http://dx.doi.org/10.1097/QAI.0b013e3181b563e7 DOI: https://doi.org/10.1097/QAI.0b013e3181b563e7

Downloads

Published

2014-01-31

How to Cite

Song, R., Qin, G., Harrison, K. M., Zhang, X., & Hall, H. I. (2014). Modeling Survival After Diagnosis of a Specific Disease Based on Case Surveillance Data. International Journal of Statistics in Medical Research, 3(1), 3–10. https://doi.org/10.6000/1929-6029.2014.03.01.2

Issue

Section

General Articles