Progression and Death as Competing Risks in Ovarian Cancer

Authors

  • Christine Eulenburg Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
  • Sven Mahner Department of Gynaecology and Gynaecologic Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
  • Linn Woelber Department of Gynaecology and Gynaecologic Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
  • Karl Wegscheider Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany

DOI:

https://doi.org/10.6000/1929-6029.2013.02.04.1

Keywords:

Multistate Models, pseudo values, cause-specific hazards, cumulative incidence, Fine and Gray model

Abstract

Background: Progression of a cancer disease and dying without progression can be understood as competing risks. The Cause-Specific Hazards Model and the Fine and Gray model on cumulative incidences are common statistical models to handle this problem. The pseudo value approach by Andersen and Klein is also able to cope with competing risks. It is still unclear which model suits best in which situation.

Methods: For a simulated dataset and a real data example of ovarian cancer patients who are exposed to progression and death the three models are examined. We compare the three models with regards to interpretation and modeling requirements.

Results: In this study, the parameter estimates for the competing risks are similar from the Cause-Specific Hazards Model and the Fine and Gray model. The pseudo value approach yields divergent results which are heavily dependent on modeling details.

Conclusions: The investigated approaches do not exclude each other but moreover complement one another. The pseudo value approach is an alternative that circumvents proportionality assumptions. As in all survival analyses, situations with low event rates should be interpreted carefully.

Author Biographies

Christine Eulenburg, Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany

Department of Medical Biometry and Epidemiology

Sven Mahner, Department of Gynaecology and Gynaecologic Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany

Department of Gynaecology and Gynaecologic Oncology

Linn Woelber, Department of Gynaecology and Gynaecologic Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany

Department of Gynaecology and Gynaecologic Oncology,

Karl Wegscheider, Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany

Department of Medical Biometry and Epidemiology

References

Peng L, Fine JP. Regression modeling of semicompeting risks data. Biometrics 2007; 63(1): 96-108. http://dx.doi.org/10.1111/j.1541-0420.2006.00621.x DOI: https://doi.org/10.1111/j.1541-0420.2006.00621.x

Xu J, Kalbfleisch JD, Tai B. Statistical analysis of illness-death processes and semicompeting risks data. Biometrics 2010; 66(3): 716-25. http://dx.doi.org/10.1111/j.1541-0420.2009.01340.x DOI: https://doi.org/10.1111/j.1541-0420.2009.01340.x

Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J Am Statist Assoc 1999. http://dx.doi.org/10.1080/01621459.1999.10474144 DOI: https://doi.org/10.1080/01621459.1999.10474144

Fine J, Jiang H, Chappel R. On semi-competing risks data. Biometrika 2001. DOI: https://doi.org/10.1093/biomet/88.4.907

Andersen PK, Borgan O, Gill RD, Keiding N. Statistical Models Based on Counting Processes. New York: Springer 1993. DOI: https://doi.org/10.1007/978-1-4612-4348-9

Hougaard P. Analysis of multivariate survival data. New York: Springer 2000. http://dx.doi.org/10.1007/978-1-4612-1304-8 DOI: https://doi.org/10.1007/978-1-4612-1304-8

Andersen PK, Abildstrom SZ, Rosthoj S. Competing risks as a multi-state model. Stat Methods Med Res 2002; 11(2): 203-15. http://dx.doi.org/10.1191/0962280202sm281ra DOI: https://doi.org/10.1191/0962280202sm281ra

Bakoyannis G, Touloumi G. Practical methods for competing risks data: A review. Stat Methods Med Res 2011. DOI: https://doi.org/10.1177/0962280210394479

Chappell R. Competing risk analyses: how are they different and why should you care? Clin Cancer Res 2012; 18(8): 2127-9. http://dx.doi.org/10.1158/1078-0432.CCR-12-0455 DOI: https://doi.org/10.1158/1078-0432.CCR-12-0455

Kim HT. Cumulative incidence in competing risks data and competing risks regression analysis. Clin Cancer Res 2007; 13(2 Pt 1): 559-65. http://dx.doi.org/10.1158/1078-0432.CCR-06-1210 DOI: https://doi.org/10.1158/1078-0432.CCR-06-1210

Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med 2007; 26(11): 2389-430. http://dx.doi.org/10.1002/sim.2712 DOI: https://doi.org/10.1002/sim.2712

Klein JP, Gerster M, Andersen PK, Tarima S, Perme MP. SAS and R functions to compute pseudo-values for censored data regression. Comput Methods Programs Biomed 2008; 89(3): 289-300. http://dx.doi.org/10.1016/j.cmpb.2007.11.017 DOI: https://doi.org/10.1016/j.cmpb.2007.11.017

Perme MP, Andersen PK. Checking hazard regression models using pseudo-observations. Stat Med 2008; 27(25): 5309-28. http://dx.doi.org/10.1002/sim.3401 DOI: https://doi.org/10.1002/sim.3401

Klein JP, Andersen PK. Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function. Biometrics 2005; 61(1): 223-9. http://dx.doi.org/10.1111/j.0006-341X.2005.031209.x DOI: https://doi.org/10.1111/j.0006-341X.2005.031209.x

Crowther MJ, Lambert PC. Simulating biologically plausible complex survival data. Stat Med 2013. http://dx.doi.org/10.1002/sim.5823 DOI: https://doi.org/10.1002/sim.5823

Woelber L, Mueller V, Eulenburg C, Schwarz J, Carney W, Jaenicke F, et al. Serum carbonic anhydrase IX during first-line therapy of ovarian cancer. Gynecol Oncol 2010; 117(2): 183-8. http://dx.doi.org/10.1016/j.ygyno.2009.11.029 DOI: https://doi.org/10.1016/j.ygyno.2009.11.029

Mahner S, Woelber L, Jung S, Eulenburg CZ, Ihnen M, Schwarz J, et al. Prognostic significance of CA-125 in the management of patients with recurrent epithelial ovarian carcinoma selected for secondary cytoreduction. Anticancer Res 2009; 29(7): 2817-21.

American Cancer Society. Ovarian Cancer. http: //wwwcancer org/cancer/ovariancancer/detailedguide/ ovarian-cancer-key-statistics 2012 May 10Available from: URL: http://www.cancer.org/cancer/ovariancancer/ detailedguide/ovarian-cancer-key-statistics

Current FIGO staging for cancer of the vagina, fallopian tube, ovary, and gestational trophoblastic neoplasia. Int J Gynaecol Obstet 2009; 105(1): 3-4. http://dx.doi.org/10.1016/j.ijgo.2008.12.015 DOI: https://doi.org/10.1016/j.ijgo.2008.12.015

Prentice RL, Kalbfleisch JD, Peterson AV, Jr., Flournoy N, Farewell VT, Breslow NE. The analysis of failure times in the presence of competing risks. Biometrics 1978; 34(4): 541-54. http://dx.doi.org/10.2307/2530374 DOI: https://doi.org/10.2307/2530374

Cox DR. Regression models and life tables (with discussion). J Royal Statist Soc Ser B 1972; 34: 187-20. DOI: https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

Cox DR. Partial Likelihood. Biometrika 1975; 62: 269-76. http://dx.doi.org/10.1093/biomet/62.2.269 DOI: https://doi.org/10.1093/biomet/62.2.269

Zhang MJ, Zhang X, Scheike TH. Modeling cumulative incidence function for competing risks data. Expert Rev Clin Pharmacol 2008; 1(3): 391-400. http://dx.doi.org/10.1586/17512433.1.3.391 DOI: https://doi.org/10.1586/17512433.1.3.391

Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42(1): 121-30. http://dx.doi.org/10.2307/2531248 DOI: https://doi.org/10.2307/2531248

Andersen PK, Klein JP, Rosthoj S. Generalised linear models for correlated pseudo-observations, with applications to multi-state models. Biometrika 2003; 90(1): 15-27. http://dx.doi.org/10.1093/biomet/90.1.15 DOI: https://doi.org/10.1093/biomet/90.1.15

Beyersmann J, Latouche A, Buchholz A, Schumacher M. Simulating competing risks data in survival analysis. Stat Med 2009; 28(6): 956-71. http://dx.doi.org/10.1002/sim.3516 DOI: https://doi.org/10.1002/sim.3516

Grambauer N, Schumacher M, Beyersmann J. Proportional subdistribution hazards modeling offers a summary analysis, even if misspecified. Stat Med 2010; 29(7-8): 875-84. http://dx.doi.org/10.1002/sim.3786 DOI: https://doi.org/10.1002/sim.3786

Downloads

Published

2013-10-31

How to Cite

Eulenburg, C., Mahner, S., Woelber, L., & Wegscheider, K. (2013). Progression and Death as Competing Risks in Ovarian Cancer . International Journal of Statistics in Medical Research, 2(4), 249–254. https://doi.org/10.6000/1929-6029.2013.02.04.1

Issue

Section

General Articles