Efficiency of Co-Expression of Transcription Factors Pdx1, Ngn3, NeuroD and Pax6 with Insulin: A Statistical Approach
DOI:
https://doi.org/10.6000/1929-6029.2013.02.03.8Keywords:
Islets, insulin, pancreas, duct ligation, transplantation, protein expressionAbstract
Aim: The objective of this study was to investigate the time related profile and efficiency of co-expression of the homeodomain proteins Pdx1, NeuroD, Ngn3, Pax6 and caspase3 with insulin, and to establish the time periods post PDL optimum for islets transplantation.
Study Design/Methods: In this experimental study, immunofluorescent staining procedure was performed on deparaffinized pancreatic duct ligated (PDL) tissues of 78 Sprague–Dawley rats. Quantification of protein coexpression was made using a computerized morphometry. The efficiency of co-expression was arbitrary defined by the value of mean ratio (score without unit) of insulin expression divided by each expression index of the other proteins, occurring within the time interval of 12–24 h post PDL. Statistical tool was used to analyze the efficiency of co-expression of proteins; analysis of variances (one way ANOVA) was used to compare the means of co-expression indexes across the time periods pre- and post PDL. P-values less than 0.05 were considered statistically significant; no post hoc test was done.
Results: The curve of insulin expression showed a crossover with that of the co-expression at different time periods pre- and post PDL. The optimal or higher efficiency of co-expression was observed for insulin and Ngn3 co-expression, while a good or medium efficiency was noted for the co-expression of insulin with Pdx1, insulin with NeuroD and insulin with Pax6. Low or weak efficiency was observed for the co-expression of insulin with caspase3.
Conclusion: We therefore propose an early islets transplantation using 12–24 h post PDL harvested pancreatic tissues.
References
Gruessner AC, Sutherland DE, Gruessner RW. Pancreas transplantation in the United States: a review. Curr Opin Organ Transplant 2010; 15(1): 93-101. http://dx.doi.org/10.1097/MOT.0b013e32833552d2 DOI: https://doi.org/10.1097/MOT.0b013e32833552d2
Brockmann J, Friend P. Immunosuppression for pancreas transplantation. Pancreas, Islet and Stem Cell Transplantation for Diabetes 2010; 137. DOI: https://doi.org/10.1093/med/9780199565863.003.0009
Mishra PK, Singh SR, Joshua IG, Tyagi SC. Stem cells as a therapeutic target for diabetes. Frontiers in bioscience: a Journal and Virtual Library 2010; 15: 461. DOI: https://doi.org/10.2741/3630
Aguayo-Mazzucato C, Bonner-Weir S. Stem cell therapy for type 1 diabetes mellitus. Nat Rev Endocrinol 2010; 6(3): 139-48. http://dx.doi.org/10.1038/nrendo.2009.274 DOI: https://doi.org/10.1038/nrendo.2009.274
DuToit D, Reece-Smith H, McShane P, Denton T, Morris P. Effect of cyclosporin A on allotransplanted pancreatic fragments to the spleen of totally pancreatectomized dogs. Transplantation 1982; 33(3): 302-307. http://dx.doi.org/10.1097/00007890-198203000-00018 DOI: https://doi.org/10.1097/00007890-198203000-00018
Robertson RP. Islet transplantation as a treatment for diabetes—a work in progress. N Engl J Med 2004; 350(7): 694-705. http://dx.doi.org/10.1056/NEJMra032425 DOI: https://doi.org/10.1056/NEJMra032425
Shapiro AJ, Ricordi C, Hering B. Edmonton's islet success has indeed been replicated elsewhere. Lancet 2003; 362(9391): 1242. http://dx.doi.org/10.1016/S0140-6736(03)14526-6 DOI: https://doi.org/10.1016/S0140-6736(03)14526-6
Ault A. Edmonton's islet success tough to duplicate elsewhere. Lancet 2003; 361(9374): 2054. http://dx.doi.org/10.1016/S0140-6736(03)13680-X DOI: https://doi.org/10.1016/S0140-6736(03)13680-X
Ben-Othman N, Courtney M, Vieira A, Pfeifer A, Druelle N, Gjernes E, et al. From pancreatic islet formation to beta-cell regeneration. Diabetes Res Clin Pract 2013. http://dx.doi.org/10.1016/j.diabres.2013.01.013 DOI: https://doi.org/10.1016/j.diabres.2013.01.013
Bonner-Weir S, Weir GC. New sources of pancreatic β-cells. Nat Biotechnol 2005; 23(7): 857-61. http://dx.doi.org/10.1038/nbt1115 DOI: https://doi.org/10.1038/nbt1115
Leeb C, Jurga M, McGuckin C, Forraz N, Thallinger C, Moriggl R, et al. New perspectives in stem cell research: beyond embryonic stem cells. Cell Prolif 2011; 44(s1): 9-14. http://dx.doi.org/10.1111/j.1365-2184.2010.00725.x DOI: https://doi.org/10.1111/j.1365-2184.2010.00725.x
Noguchi H. Production of pancreatic beta-cells from stem cells. Curr Diabet Rev 2010; 6(3): 184-90. http://dx.doi.org/10.2174/157339910791162934 DOI: https://doi.org/10.2174/157339910791162934
Tchokonte-Nana V. Cellular mechanisms involved in the recapitulation of endocrine development in the duct ligated pancreas 2011.
Tchokonte-Nana V, Longo-Mbenza B, Page BJ, Du Toit DF. Morphogenetic and clinical perspectives on the neogenesis of pancreatic duct ligation-induced islet cells: a review 2011.
Page BJ, du Toit DF, Muller C, Mattysen J, Lyners R, Arends E. Autogenous Transplantation of a Duct Ligated Pancreas: A Functional and Histological Study. JOP.J Pancreas (Online) 2004; 5(2): 71-80.
Peshavaria M, Gamer L, Henderson E, Teitelman G, Wright C, Stein R. XIHbox 8, an endoderm-specific Xenopus homeodomain protein, is closely related to a mammalian insulin gene transcription factor. Mol Endocrinol 1994; 8(6): 806-16. http://dx.doi.org/10.1210/me.8.6.806 DOI: https://doi.org/10.1210/mend.8.6.7935494
Lin C, Vuguin P. Determinants of Pancreatic Islet Development in Mice and Men: A Focus on the Role of Transcription Factors. Hormone Res Paediatr 2012; 77(4): 205-13. http://dx.doi.org/10.1159/000337219 DOI: https://doi.org/10.1159/000337219
Slack J. Developmental biology of the pancreas. Development 1995; 121(6): 1569-80. DOI: https://doi.org/10.1242/dev.121.6.1569
Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, Anderson DJ, et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 2000; 127(16): 3533-42. DOI: https://doi.org/10.1242/dev.127.16.3533
Schwitzgebel VM. Programming of the pancreas. Mol Cell Endocrinol 2001; 185(1): 99-108. http://dx.doi.org/10.1016/S0303-7207(01)00628-1 DOI: https://doi.org/10.1016/S0303-7207(01)00628-1
Rosenberg LC, Lafon ML, Pedersen JK, Yassin H, Jensen JN, Serup P, et al. The transcriptional activity of Neurog3 affects migration and differentiation of ectopic endocrine cells in chicken endoderm. Developmental Dynamics 2010; 239(7): 1950-66. http://dx.doi.org/10.1002/dvdy.22329 DOI: https://doi.org/10.1002/dvdy.22329
Lyttle B, Li J, Krishnamurthy M, Fellows F, Wheeler M, Goodyer C, et al. Transcription factor expression in the developing human fetal endocrine pancreas. Diabetologia 2008; 51(7): 1169-80. http://dx.doi.org/10.1007/s00125-008-1006-z DOI: https://doi.org/10.1007/s00125-008-1006-z
Rojas A, Khoo A, Tejedo JR, Bedoya FJ, Soria B, Martín F. Islet cell development. The Islets of Langerhans: Springer 2010; pp. 59-75. http://dx.doi.org/10.1007/978-90-481-3271-3_4 DOI: https://doi.org/10.1007/978-90-481-3271-3_4
Mastracci TL, Anderson KR, Papizan JB, Sussel L. Regulation of Neurod1 Contributes to the Lineage Potential of Neurogenin3 Endocrine Precursor Cells in the Pancreas. PLoS Genetics 2013; 9(2): e1003278. http://dx.doi.org/10.1371/journal.pgen.1003278 DOI: https://doi.org/10.1371/journal.pgen.1003278
Gittes GK, Rutter WJ. Onset of cell-specific gene expression in the developing mouse pancreas. Proc Natl Acad Sci USA 1992; 89(3): 1128-32. http://dx.doi.org/10.1073/pnas.89.3.1128 DOI: https://doi.org/10.1073/pnas.89.3.1128
Upchurch BH, Aponte GW, Leiter AB. Expression of peptide YY in all four islet cell types in the developing mouse pancreas suggests a common peptide YY-producing progenitor. Development 1994; 120(2): 245-52. DOI: https://doi.org/10.1242/dev.120.2.245
Lineage determinants in early endocrine development. Seminars in Cell & Developmental Biology: Elsevier 2012.
Lee JC, Smith SB, Watada H, Lin J, Scheel D, Wang J, et al. Regulation of the pancreatic pro-endocrine gene neurogenin3. Diabetes 2001; 50(5): 928-36. http://dx.doi.org/10.2337/diabetes.50.5.928 DOI: https://doi.org/10.2337/diabetes.50.5.928
Hsiang-Po H, Min L, El-Hodiri HM, Chu K, Jamrich M, Tsai M-J. Regulation of the Pancreatic Islet-Specific GeneBETA2 (neuroD) by Neurogenin 3. Mol Cell Biol 2000; 20(9): 3292-309. http://dx.doi.org/10.1128/MCB.20.9.3292-3307.2000 DOI: https://doi.org/10.1128/MCB.20.9.3292-3307.2000
Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci USA 2000; 97(4): 1607-11. http://dx.doi.org/10.1073/pnas.97.4.1607 DOI: https://doi.org/10.1073/pnas.97.4.1607
Van de Casteele M, Leuckx G, Baeyens L, Cai Y, Yuchi Y, Coppens V, et al. Neurogenin 3+ cells contribute to β-cell neogenesis and proliferation in injured adult mouse pancreas. Cell Death Disease 2013; 4(3): e523. http://dx.doi.org/10.1038/cddis.2013.52 DOI: https://doi.org/10.1038/cddis.2013.52
Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. The Pax4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas 1997. DOI: https://doi.org/10.1038/386399a0
Smith SB, Ee HC, Conners JR, German MS. Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol Cell Biol 1999; 19(12): 8272-80. DOI: https://doi.org/10.1128/MCB.19.12.8272
Longo-Mbenza B, On'kin JKL, Okwe AN, Kabangu NK, Fuele SM. Metabolic syndrome, aging, physical inactivity, and incidence of type 2 diabetes in general African population. Diabet Vasc Dis Res 2010; 7(1): 28-39. http://dx.doi.org/10.1177/1479164109346362 DOI: https://doi.org/10.1177/1479164109346362
Bliss M. The discovery of insulin: University of Chicago Press 2013.
Vincent S. Internal secretion and the ductless gland, Chapter on the pancreas 2007.
Stoffers DA, Heller RS, Miller CP, Habener JF. Developmental expression of the homeodomain protein IDX-1 in mice transgenic for an IDX-1 promoter/lacZ
transcriptional reporter. Endocrinology 1999; 140(11): 5374-81. http://dx.doi.org/10.1210/en.140.11.5374 DOI: https://doi.org/10.1210/endo.140.11.7122
Seymour PA, Sander M. Historical Perspective: Beginnings of the β-Cell Current Perspectives in β-Cell Development. Diabetes 2011; 60(2): 364-76. http://dx.doi.org/10.2337/db10-1068 DOI: https://doi.org/10.2337/db10-1068
Pictate R, Rutter W. Development of embryonic endocrine pancreas. Handbook of Physiology. Baltimore: Williams & Wilkins 1972; pp. 25-66.
Pang K, Mukonoweshuro C, Wong GG. Beta cells arise from glucose transporter type 2 (Glut2)-expressing epithelial cells of the developing rat pancreas. Proc Natl Acad Sci USA 1994; 91(20): 9559-63. http://dx.doi.org/10.1073/pnas.91.20.9559 DOI: https://doi.org/10.1073/pnas.91.20.9559
Øster A, Jensen J, Serup P, Galante P, Madsen OD, Larsson L. Rat endocrine pancreatic development in relation to two homeobox gene products (Pdx-1 and Nkx 6.1). J Histochem Cytochem 1998; 46(6): 707-15. http://dx.doi.org/10.1177/002215549804600602 DOI: https://doi.org/10.1177/002215549804600602
Sander M, German MS. The β cell transcription factors and development of the pancreas. J Mol Med 1997; 75(5): 327-40. http://dx.doi.org/10.1007/s001090050118 DOI: https://doi.org/10.1007/s001090050118
St-Onge L, Sosa-Pineda B, Chowdhury K, Mansouri A, Gruss P. Pax6 is required for differentiation of glucagon-producing α-cells in mouse pancreas. Nature 1997; 387(6631): 406-409. http://dx.doi.org/10.1038/387406a0 DOI: https://doi.org/10.1038/387406a0
Dohrmann C, Gruss P, Lemaire L. Pax genes and the differentiation of hormone-producing endocrine cells in the pancreas. Mech Dev 2000; 92(1): 47-54. http://dx.doi.org/10.1016/S0925-4773(99)00324-X DOI: https://doi.org/10.1016/S0925-4773(99)00324-X
Collombat P, Hecksher-Sørensen J, Serup P, Mansouri A. Specifying pancreatic endocrine cell fates. Mech Dev 2006; 123(7): 501-12. http://dx.doi.org/10.1016/j.mod.2006.05.006 DOI: https://doi.org/10.1016/j.mod.2006.05.006
Jensen J. Gene regulatory factors in pancreatic development. Developmental Dynamics 2004; 229(1): 176-200. http://dx.doi.org/10.1002/dvdy.10460 DOI: https://doi.org/10.1002/dvdy.10460
Kim SK, MacDonald RJ. Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 2002; 12(5): 540-47. http://dx.doi.org/10.1016/S0959-437X(02)00338-6 DOI: https://doi.org/10.1016/S0959-437X(02)00338-6
Servitja J, Ferrer J. Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia 2004; 47(4): 597-13. http://dx.doi.org/10.1007/s00125-004-1368-9 DOI: https://doi.org/10.1007/s00125-004-1368-9
Naya FJ, Stellrecht C, Tsai M. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 1995; 9(8): 1009-19. http://dx.doi.org/10.1101/gad.9.8.1009 DOI: https://doi.org/10.1101/gad.9.8.1009
Collombat P, Hecksher-Sørensen J, Krull J, Berger J, Riedel D, Herrera PL, et al. Embryonic endocrine pancreas and mature β cells acquire α and PP cell phenotypes upon Arx misexpression. J Clin Invest 2007; 117(4): 961-70. http://dx.doi.org/10.1172/JCI29115 DOI: https://doi.org/10.1172/JCI29115
Johansson KA, Dursun U, Jordan N, Gu G, Beermann F, Gradwohl G, et al. Temporal control of neurogenin3 activity in pancreas progenitors reveals competence windows for the generation of different endocrine cell types. Developmental Cell 2007; 12(3): 457-65. http://dx.doi.org/10.1016/j.devcel.2007.02.010 DOI: https://doi.org/10.1016/j.devcel.2007.02.010
Xu X, D'Hoker J, Stangé G, Bonné S, De Leu N, Xiao X, et al. β Cells Can Be Generated from Endogenous Progenitors in Injured Adult Mouse Pancreas. Cell 2008; 132(2): 197-207. http://dx.doi.org/10.1016/j.cell.2007.12.015 DOI: https://doi.org/10.1016/j.cell.2007.12.015
Thorel F, Népote V, Avril I, Kohno K, Desgraz R, Chera S, et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 2010; 464(7292): 1149-54. http://dx.doi.org/10.1038/nature08894 DOI: https://doi.org/10.1038/nature08894
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 Don F. du Toit, Benjamin Longo-Mbenza, Benedict J. Page, Venant Tchokonte-Nana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .