Analysis of Genetic Relationship Among 11 Iranian Ethnic Groups with Bayesian Multidimensional Scaling Using HLA Class II Data

Authors

  • Najaf Zare Department of Biostatistics, Shiraz University of Medical Sciences, Shiraz, Iran
  • Shirin Farjadian Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
  • Samaneh Maleknia Department of Biostatistics, Shiraz University of Medical Sciences, Shiraz, Iran

DOI:

https://doi.org/10.6000/1929-6029.2013.02.03.5

Keywords:

Bayesian methods, Multidimensional scaling, Anthropological study, Immunogenetics, R and WinBUGS software

Abstract

Background: The key feature of Bayesian methods is their lack of dependence on defaults necessary for classical statistics. Because of the high volume of simulation, Bayesian methods have a high degree of accuracy. They are efficient in data mining and analyzing large volumes of data, and can be upgraded by entering new data.

Objective: We used Bayesian multidimensional scaling (MDS) to analyze the genetic relationships among 11 Iranian ethnic groups based on HLA class II data.

Method: Allele frequencies of three HLA loci from 816 unrelated individuals belonging to 11 Iranian ethnic groups were analyzed by Bayesian MDS using R and WinBUGS software.

Results: like the results of correspondence analysis as a prototype of classical MDS analysis, the results of Bayesian MDS also showed Arabs from Famur, Balochis, Zoroastrians and Jews to be separate from other Iranian ethnic groups. Decreases stress in Bayesian MDS method compared to classical method revealed the accuracy of Bayesian MDS for HLA data analyses.

Conclusion: This study reports the first application of Bayesian multidimensional scaling to HLA data analysis with Nei’s DA genetic distances. Stress reduction in Bayesian MDS compared to classical MDS showed that the Bayesian approach can improve the accuracy of genetic data analysis.

Author Biographies

Najaf Zare, Department of Biostatistics, Shiraz University of Medical Sciences, Shiraz, Iran

Department of Biostatistics

Shirin Farjadian, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran

Department of Immunology,

Samaneh Maleknia, Department of Biostatistics, Shiraz University of Medical Sciences, Shiraz, Iran

Department of Biostatistics

References

DeSarbo WS, Kim Y, Fong D. A Bayesian multidimensional scaling procedure for the spatial analysis of revealed choice data. J Economet 1998; 89(1-2): 79-108. http://dx.doi.org/10.1016/S0304-4076(98)00056-6 DOI: https://doi.org/10.1016/S0304-4076(98)00056-6

Oh MS, Raftery AE. Bayesian multidimensional scaling and choice of dimension. J Am Statist Assoc 2001; 96(455): 1031-44. http://dx.doi.org/10.1198/016214501753208690 DOI: https://doi.org/10.1198/016214501753208690

Park J, DeSarbo WS, Liechty J. A hierarchical Bayesian multidimensional scaling methodology for accommodating both structural and preference heterogeneity. Psychometrika 2008; 73(3): 451-72. http://dx.doi.org/10.1007/s11336-008-9064-1 DOI: https://doi.org/10.1007/s11336-008-9064-1

Stigler SM. Who discovered Bayes's theorem? Am Statist 1983; 37(part 4a): 290-6. DOI: https://doi.org/10.1080/00031305.1983.10483122

Lindley DV, Lindley D. Bayesian statistics: A review: SIAM 1972; pp. 1-9. http://dx.doi.org/10.1137/1.9781611970654.ch1 DOI: https://doi.org/10.1137/1.9781611970654

Kim C-J, Nelson CR. Has the US economy become more stable? A Bayesian approach based on a Markov-switching model of the business cycle. Rev Econom Statist 1999; 81(4): 608-16. http://dx.doi.org/10.1162/003465399558472 DOI: https://doi.org/10.1162/003465399558472

Corander J, Waldmann P, Sillanpää MJ. Bayesian analysis of genetic differentiation between populations. Genetics 2003; 163(1): 367. DOI: https://doi.org/10.1093/genetics/163.1.367

Boys RJ, Henderson DA. A Bayesian approach to DNA sequence segmentation. Biometrics 2004; 60(3): 573-81. http://dx.doi.org/10.1111/j.0006-341X.2004.00206.x DOI: https://doi.org/10.1111/j.0006-341X.2004.00206.x

Ashby D. Bayesian statistics in medicine: a 25 year review. Statist Med 2006; 25(21): 3589-631. http://dx.doi.org/10.1002/sim.2672 DOI: https://doi.org/10.1002/sim.2672

Rogers NJ, Lechler RI. Allorecognition. Am J Transplant 2001; 1(2): 97-102. http://dx.doi.org/10.1034/j.1600-6143.2001.10201.x DOI: https://doi.org/10.1034/j.1600-6143.2001.10201.x

Arnaiz‐Villena A, Iliakis P, González‐Hevilla M, Longas J, Gómez‐Casado E, Sfyridaki K, et al. The origin of Cretan populations as determined by characterization of HLA alleles. Tissue Antigens 1999; 53(3): 213-26. http://dx.doi.org/10.1034/j.1399-0039.1999.530301.x DOI: https://doi.org/10.1034/j.1399-0039.1999.530301.x

Zachary AA, Kopchaliiska D, Jackson AM, Leffell MS. Immunogenetics and immunology in transplantation. Immunol Res 2010; 47(1-3): 232-9. http://dx.doi.org/10.1007/s12026-009-8154-1 DOI: https://doi.org/10.1007/s12026-009-8154-1

Farjadian S, Ota M, Inoko H, Ghaderi A. The genetic relationship among Iranian ethnic groups: an anthropological view based on HLA class II gene polymorphism. Mol Biol Rep 2009; 36(7): 1943-50. http://dx.doi.org/10.1007/s11033-008-9403-4 DOI: https://doi.org/10.1007/s11033-008-9403-4

Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 1973; 70(12): 3321-3. http://dx.doi.org/10.1073/pnas.70.12.3321 DOI: https://doi.org/10.1073/pnas.70.12.3321

Jobson JD. Applied multivariate data analysis: Categorical and Multivariate Method. 4th ed: Springer 1998; pp. 760-764.

Cox TF, Cox MAA. Multidimensional scaling. 2nd ed: CRC Press 2001; chapter 1-2. DOI: https://doi.org/10.1201/9781420036121

Rencher AC. Methods of multivariate analysis. 2nd ed: Wiley-Interscience; 2002; chapter: 15.2; pp. 504-507.

Nei M, Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. J Mol Evolut 1983; 19(2): 153-70. http://dx.doi.org/10.1007/BF02300753 DOI: https://doi.org/10.1007/BF02300753

Kruskal JB. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964; 29(1): 1-27. DOI: https://doi.org/10.1007/BF02289565

Smith AF, Gelfand AE. Bayesian statistics without tears: a sampling–resampling perspective. Am Statist 1992; 46(2); 84-88. DOI: https://doi.org/10.1080/00031305.1992.10475856

Andrieu C, Doucet A, Holenstein R. Particle markov chain monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2010; 72(3): 269-342. http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x DOI: https://doi.org/10.1111/j.1467-9868.2009.00736.x

Cowles MK, Carlin BP. Markov chain Monte Carlo convergence diagnostics: a comparative review. J Am Statist Assoc 1996; 883-904. http://dx.doi.org/10.1080/01621459.1996.10476956 DOI: https://doi.org/10.1080/01621459.1996.10476956

Rencher AC. Methods of multivariate analysis. 2nd ed: Wiley-Interscience; 2002; chapter: 15.3; pp. 514-530.

Okada K, Shigemasu K. BMDS: A Collection of R Functions for Bayesian Multidimensional Scaling. Appl Psychol Measurem 2009; 33(7): 2. http://dx.doi.org/10.1177/0146621608321761 DOI: https://doi.org/10.1177/0146621608321761

Downloads

Published

2013-07-30

How to Cite

Zare, N., Farjadian, S., & Maleknia, S. (2013). Analysis of Genetic Relationship Among 11 Iranian Ethnic Groups with Bayesian Multidimensional Scaling Using HLA Class II Data. International Journal of Statistics in Medical Research, 2(3), 204–208. https://doi.org/10.6000/1929-6029.2013.02.03.5

Issue

Section

General Articles