Role of Fetal Cardiac ECHO and Fetal Cardiac MRI in Prediction of Post Natal Hemodynamic Maladaptation in Fetuses of Diabetic Mothers
DOI:
https://doi.org/10.6000/1929-4247.2024.13.02.5Keywords:
Diabetic mothers, fetal echocardiography, hemodynamic maladaptation, patent ductus arteriosusAbstract
Background: Maternal diabetes mellitus (DM) is defined as a degree of glucose intolerance with recognition during pregnancy (pregestational or gestational, type 1 or type 2), and it is estimated to be 15% in pregnant females in 2019. The current study aimed to study the role of fetal echocardiography and fetal cardiac magnetic resonance imaging (MRI) in anticipation and diagnosis of hemodynamic maladaptation changes in fetuses of diabetic mothers as predictors for (closure of Patent ductus arteriosus (PDA), persistent pulmonary hypertension and diastolic dysfunction) which were confirmed with post-natal echocardiographic and clinical assessment.
Methods: This study was an observational follow-up study that included 80 pregnant diabetic females who were following in the specialized clinics of Ain Shams University Hospitals during the period starting from August 2020 till December 2022.
Results: Diabetes affected left ventricle (LV) diastolic function and global cardiac function but did not affect LV systolic function (p-value=0.000). Interventricular septum (IVS) thickness had a significant positive correlation with LV- Myocardial performance index (MPI) and indices of DM such as HbA1c. Diastolic dysfunction was the most affected cardiac parameter in infants of diabetic mothers (p-value=0.002). The hemoglobin A1c (HbA1c) was the most significant predictor for IVS thickness in diabetic mothers' fetuses, especially with a long duration of DM (p-value=0.012).
Conclusion: Fetal echocardiography in diabetic mothers is essential and the gold standard modality not only for diagnosing structural abnormalities but also for evaluating the cardiac function of the fetuses. Fetal cardiac MRI could be considered a complementary imaging modality that uses no ionizing radiation, good tissue contrast, and a larger field of view.
References
Depla AL, De Wit L, Steenhuis TJ, Slieker MG, Voormolen DN, Scheffer PG, De Heus R, Van Rijn BB, Bekker MN. Effect of maternal diabetes on fetal heart function on echocardiography: systematic review and meta-analysis. Ultrasound Obstet Gynecol 2021; 57(4): 539-550. https://doi.org/10.1002/uog.22163
Hunter LE and Sharland GK. Maternal gestational diabetes and fetal congenital heart disease: an observational study. J Preg Child Health 2015; 2(132): 2. https://doi.org/10.4172/2376-127X.1000132 DOI: https://doi.org/10.4172/2376-127X.1000132
Chou FS, Chakradhar R, Ghimire LV. Socioeconomic and racial disparities in the prevalence of congenital heart disease in infants of diabetic mothers. The Journal of Maternal-Fetal & Neonatal Medicine 2019; 1-4. https://doi.org/10.1080/14767058.2019.1702955 DOI: https://doi.org/10.1080/14767058.2019.1702955
Hughes RCE, Moore MP, Gullam JE, et al. An early pregnancy HbA1c≥ 7 %( 41 mmol/mol) is optimal for detecting diabetes and identifies women at increased risk of adverse pregnancy outcomes. Diabetes Care 2014; 37(11): 2953-2959 https://doi.org/10.2337/dc14-1312 DOI: https://doi.org/10.2337/dc14-1312
Rocchini AP, Aaron GD. Pediatric Cardiovascular Physiology. Pediatric Surgery: General Principles and Newborn Surgery 2020; 201-217. https://doi.org/10.1007/978-3-662-43588-5_13 DOI: https://doi.org/10.1007/978-3-662-43588-5_13
Clyman RI. Patent ductus arteriosus, its treatments, and the risks of pulmonary morbidity. Seminars in perinatology 2018; 42(4). WB Saunders. https://doi.org/10.1053/j.semperi.2018.05.006 DOI: https://doi.org/10.1053/j.semperi.2018.05.006
Bowker L, Rakhee M, Xiaocai Y, Isabelle GP. Intestinal microcirculation and necrotizing enterocolitis: the vascular endothelial growth factor system. Seminars in Fetal and Neonatal Medicine 2018; 23(6). https://doi.org/10.1016/j.siny.2018.08.008 DOI: https://doi.org/10.1016/j.siny.2018.08.008
Haris K, Hedström E, Bidhult S, et al. Self‐gated fetal cardiac MRI with tiny golden angle iGRASP: A feasibility study. Journal of Magnetic Resonance Imaging 2017; 46(1): 207-17. https://doi.org/10.1002/jmri.25599 DOI: https://doi.org/10.1002/jmri.25599
Rakha S, El Marsafawy H. Sensitivity, specificity, and accuracy of fetal echocardiography for high-risk pregnancies in a tertiary center in Egypt. Archives de Pédiatrie 2019; 26(6): 337-41. https://doi.org/10.1016/j.arcped.2019.08.001 DOI: https://doi.org/10.1016/j.arcped.2019.08.001
Chaptinel J, Yerly J, Mivelaz Y, Prsa M, Alamo L, Vial Y, Berchier G, Rohner C, Gudinchet F, Stuber M. Fetal cardiac cine magnetic resonance imaging in utero. Scientific reports 2017; 7(1): 1-0. https://doi.org/10.1038/s41598-017-15701-1 DOI: https://doi.org/10.1038/s41598-017-15701-1
Büke B, Destegül E, Akkaya H, Şimşek D, et al. Prediction of neonatal respiratory distress syndrome via pulmonary artery Doppler examination. The Journal of Maternal-Fetal & Neonatal Medicine 2019; 32(10): 1640-1645. https://doi.org/10.1080/14767058.2017.1413549 DOI: https://doi.org/10.1080/14767058.2017.1413549
Gou Z, Zhang J, Yan X, Wang Z, Li S, Deng X. Variations in ductus arteriosus Doppler parameters in different sonographic views during the second half of gestation. Experimental and Therapeutic Medicine 2019; 17(1): 502-6. https://doi.org/10.3892/etm.2018.6943
Abuhamad AZ, Chaoui R. A practical guide to fetal echocardiography: normal and abnormal hearts: Lippincott Williams and Wilkins 2012.
Carvalho JS, Allan LD, Chaoui R, Copel JA, DeVore GR, Hecher K, Lee W, Munoz H, Paladini D, Tutschek B, Yagel S. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol 2013; 41: 348-359. https://doi.org/10.1002/uog.12403 DOI: https://doi.org/10.1002/uog.12403
Braley K, Dadlani G, Geiger J, Douglas K, Mehta M. Introduction to fetal echocardiography. Progress in Pediatric Cardiology 2020; 58: 101278. https://doi.org/10.1016/j.ppedcard.2020.101278 DOI: https://doi.org/10.1016/j.ppedcard.2020.101278
Pilania R, Sikka P, Rohit MK, Suri V, Kumar P. Fetal cardiodynamics by echocardiography in insulin dependent maternal diabetes and its correlation with pregnancy outcome. Journal of Clinical and Diagnostic Research: JCDR 2016; 10(7): QC01. https://doi.org/10.7860/JCDR/2016/17993.8079 DOI: https://doi.org/10.7860/JCDR/2016/17993.8079
Hernandez-Andrade E, Benavides-Serralde JA, Cruz-Martinez R, Welsh A, Mancilla-Ramirez J. Evaluation of conventional Doppler fetal cardiac function parameters: E/A ratios, outflow tracts, and myocardial performance index. Fetal Diagnosis and Therapy 2012; 32(1-2): 22-9. https://doi.org/10.1159/000330792 DOI: https://doi.org/10.1159/000330792
Rychik J, Ayres N, Cuneo B, Gotteiner N, Hornberger L, Spevak PJ, Van Der Veld M. American Society of Echocardiography guidelines and standards for performance of the fetal echocardiogram. Journal of the American Society of Echocardiography 2004; 17(7): 803-10. https://doi.org/10.1016/j.echo.2004.04.011 DOI: https://doi.org/10.1016/j.echo.2004.04.011
Dervisoglu P, Kosecik M, Kumbasar S. Effects of gestational and pregestational diabetes mellitus on the foetal heart: a cross-sectional study. Journal of Obstetrics and Gynaecology 2018; 38(3): 408-12. https://doi.org/10.1080/01443615.2017.1410536 DOI: https://doi.org/10.1080/01443615.2017.1410536
Ghouse J, Isaksen JL, Skov MW, Lind B, Svendsen JH, Kanters JK, Olesen MS, Holst AG, Nielsen JB. Effect of diabetes duration on the relationship between glycaemic control and risk of death in older adults with type 2 diabetes. Diabetes, Obesity, and Metabolism 2020; 22(2): 231-42. https://doi.org/10.1111/dom.13891 DOI: https://doi.org/10.1111/dom.13891
Gou Z, Zhang J, Yan X, Wang Z, Li S, Deng X. Variations in ductus arteriosus Doppler parameters in different sonographic views during the second half of gestation. Experimental and therapeutic medicine 2019; 17(1): 502-6. https://doi.org/10.3892/etm.2018.6943 DOI: https://doi.org/10.3892/etm.2018.6943
Bhorat I, Pillay M, Reddy T. Determination of the fetal myocardial performance index in women with gestational impaired glucose tolerance and to assess whether this parameter is a possible prognostic indicator of adverse fetal outcome. The Journal of Maternal-Fetal & Neonatal Medicine 2018; 31(15): 2019-26. https://doi.org/10.1080/14767058.2017.1334047 DOI: https://doi.org/10.1080/14767058.2017.1334047
Sanhal CY, Daglar HK, Kara O, Uygur D, Yucel A. Assessment of fetal myocardial performance index in women with pregestational and gestational diabetes mellitus. Journal of Obstetrics and Gynaecology Research 2017; 43(1): 65-72. https://doi.org/10.1111/jog.13174 DOI: https://doi.org/10.1111/jog.13174
Tejaswi GM, Samanth J, Vasudeva A, Lewis L, Kumar P, Nayak K, Padmakumar R. Fetal echocardiography at term in diabetic pregnancies helps predict the adverse neonatal outcome-Results of a prospective observational study from South India. Indian Heart Journal 2020; 72(6): 576-81. https://doi.org/10.1016/j.ihj.2020.09.017 DOI: https://doi.org/10.1016/j.ihj.2020.09.017
Nashaat AH, Mansour GM. Uncontrolled Diabetes Mellitus and Fetal Heart 2010}, https://api.semanticscholar.org/ CorpusID: 44031386}
Alyousif SM, Aldokhel FT, Alkhanbashi OK, Alqahtani MH, Aladawi AM, Ashmawi AA, Al-Qunaibet A, Masuadi E. The incidence of congenital heart defects in offspring among women with diabetes in Saudi Arabia. Cureus 2021; 13(3). https://doi.org/10.7759/cureus.14225 DOI: https://doi.org/10.7759/cureus.14225
Alvarez SG, McBrien A. Ductus arteriosus and fetal echocardiography: implications for practice. In Seminars in Fetal and Neonatal Medicine 2018; 23(4): 285-291. https://doi.org/10.1016/j.siny.2018.03.001 DOI: https://doi.org/10.1016/j.siny.2018.03.001
Keshuraj V, Prakash A, Boruah DK, Ramanna HC, Sowmyashree AR, Mithun SK. Validity of foetal Doppler indices in predicting post-natal respiratory distress syndrome: a prospective study. Egyptian Journal of Radiology and Nuclear Medicine 2022; 53[1]: 1-9. https://doi.org/10.1186/s43055-022-00865-2 DOI: https://doi.org/10.1186/s43055-022-00865-2
Fouda UM, Abou ElKassem MM, Hefny SM, Fouda RM, Hashem AT. Role of fetal echocardiography in the evaluation of structure and function of fetal heart in diabetic pregnancies. The Journal of Maternal-Fetal & Neonatal Medicine 2013; 26(6): 571-5. https://doi.org/10.3109/14767058.2012.743521 DOI: https://doi.org/10.3109/14767058.2012.743521
Balli S, Pac FA, Ece İ, Oflaz MB, Kibar AE, Kandemir Ö. Assessment of cardiac functions in fetuses of gestational diabetic mothers. Pediatr Cardiol 2014; 35(1): 30-37. https://doi.org/10.1007/s00246-013-0734-0 DOI: https://doi.org/10.1007/s00246-013-0734-0
Shu LP, Zhang RH, Cai YH, Zhou JB, Yang JK, Qi L. Maternal Diabetes Mellitus and Persistent Pulmonary Hypertension of the Newborn: Accumulated Evidence From Observational Studies. Can J Diabetes 2020; 44(4): 327-334.e3. https://doi.org/10.1016/j.jcjd.2019.10.002 DOI: https://doi.org/10.1016/j.jcjd.2019.10.002
Cordero L, Thung S, Landon MB, Nankervis CA. Breast-feeding initiation in women with pregestational diabetes mellitus. Clinical Pediatrics 2014; 53(1): 18-25. https://doi.org/10.1177/0009922813496455 DOI: https://doi.org/10.1177/0009922813496455
Simpson J. Fetal Cardiac Function. Fetal Cardiology: A Practical Approach to Diagnosis and Management 2018; 41-56. https://doi.org/10.1007/978-3-319-77461-9_5 DOI: https://doi.org/10.1007/978-3-319-77461-9_5
Shozu K, Komatsu M, Sakai A, Komatsu R, Dozen A, Machino H, Yasutomi S, Arakaki T, Asada K, Kaneko S, Matsuoka R. Model-agnostic method for thoracic wall segmentation in fetal ultrasound videos. Biomolecules 2020; 10(12): 1691. https://doi.org/10.3390/biom10121691 DOI: https://doi.org/10.3390/biom10121691
Depla AL, De Wit L, Steenhuis TJ, Slieker MG, Voormolen DN, Scheffer PG, De Heus R, Van Rijn BB, Bekker MN. Effect of maternal diabetes on fetal heart function on echocardiography: systematic review and meta‐analysis. Ultrasound in Obstetrics & Gynecology 2021; 57(4): 539-50. https://doi.org/10.1002/uog.22163 DOI: https://doi.org/10.1002/uog.22163
Murlewska J, Sylwestrzak O, Respondek‐Liberska M. Unfavorable post-natal outcome with significant dilation of the fetal main pulmonary artery near term. Birth Defects Research 2021; 113(1): 55-62. https://doi.org/10.1002/bdr2.1828 DOI: https://doi.org/10.1002/bdr2.1828
Votino C, Jani J, Damry N, Dessy H, Kang X, Cos T, Divano L, Foulon W, De Mey J, Cannie M. Magnetic resonance imaging in the normal fetal heart and in congenital heart disease. Ultrasound in Obstetrics & Gynecology 2012; 39(3): 322-9. https://doi.org/10.1002/uog.10061 DOI: https://doi.org/10.1002/uog.10061
Elmekkawi SF, Mansour GM, Elsafty MS, Hassanin AS, Laban M, Elsayed HM. Prediction of fetal hypertrophic cardiomyopathy in diabetic pregnancies compared with post-natal outcome. Clinical Medicine Insights: Women's Health 2015; 8: CMWH-S32825. https://doi.org/10.4137/CMWH.S32825 DOI: https://doi.org/10.4137/CMWH.S32825
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .