Metagenomic Analysis during Co-Digestion Buffalo Sludge and Tomato Pomace Post Thermal Stress: A Case Study
DOI:
https://doi.org/10.6000/1927-520X.2024.13.12Keywords:
Biogas, agricultural by-products, anaerobic digestion, next generation sequencingAbstract
The tomato industry and buffalo farming generate waste, including sludge (BS) and tomato pomace (TP), which can significantly impact their economic and environmental sustainability. The case study tracked changes in microflora composition after a thermal shock during anaerobic co-digestion. The inoculum-to-substrate ratio was 0.5 based on volatile solid content under mesophilic conditions. An Automatic Methane Potential Test System was used to monitor the process before and after thermal stress (50°C) occurred for three days. Next-generation sequencing analyzed the bacterial and archaeal communities. The pH decreased, and methane production plateaued due to the high volatile solid content (87 g/L). After thermal stress, the pH returned to neutral, and the batch resumed biogas production. The cumulative CH4 production reached 3,115 Nml. The biogas had a maximum methane peak of 78.5% compared to 58.4% in BS. The taxonomic classification showed that Firmicutes (51.7%) and Bacteroidetes (29.9%) represented 81.6% of the total OTUs among the bacteria. Fonticella, the most abundant Clostridiaceae (average 4.3%), was absent in BS and increased (up to 17.1%) in TP during methane production. Methanocorpusculum was the most abundant in the archaeal community. However, Metanosarcina showed a stronger correlation with methane production. Brief thermal stress significantly altered bacterial and archaeal populations and allowed to resume biogas production.
References
Bacenetti J, Duca D, Negri M, Fusi A, Fiala M. Mitigation strategies in the agro-food sector: The anaerobic digestion of tomato purée by-products. An Italian case study. Sci Total Environ 2015; 526: 88-97. https://doi.org/10.1016/j.scitotenv.2015.04.069
Paritosh K, Kushwaha SK, Yadav M, Pareek N, Chawade A, Vivekanand V. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. Biomed Res Int 2017; 1-19. https://doi.org/10.1155/2017/2370927
The 2023 Processed Tomato Yearbook. Special issue of www.tomato.news.com Edited by Tomato News sas 2024; ISSN 1145-96.
FAOSTAT, 2024. https://www.fao.org/faostat/en/#data (accessed February 2024)
Boccia F, Di Donato P, Covino D, Poli A. Food waste and bio-economy: A scenario for the Italian tomato market. J Clean Prod 2019; 227: 424-433. https://doi.org/10.1016/j.jclepro.2019.04.180
Calabrò PS, Greco R, Evangelou A, Komilis D. Anaerobic digestion of tomato processing waste: Effect of alkaline pretreatment. J Environ Manage 2015; 163: 49-52. https://doi.org/10.1016/j.jenvman.2015.07.061
Del Valle M, Cámara M, Torija ME. Chemical characterization of tomato pomace. J Sci Food Agric 2006; 86: 1232-1236. FAOSTAT, 2019. http://www.fao.org/faostat/en/#data/QA (accessed January 10, 2021). https://doi.org/10.1002/jsfa.2474
Lu Z, Wang J, Gao R, Ye F, Zhao G. Sustainable valorisation of tomato pomace: A comprehensive review. Trends Food Sci Technol 2019; 86: 172-187. https://doi.org/10.1016/j.tifs.2019.02.020
Li Y, Xu F, Li Y, Lu J, Li S, Shah A, Zhang X, Zhang H, Gong X, Li G. Reactor performance and energy analysis of solid state anaerobic co-digestion of dairy manure with corn stover and tomato residues. Waste Manag 2018; 73: 130-139. https://doi.org/10.1016/j.wasman.2017.11.041
Faugno S, Pindozzi S, Infascelli R, Okello C, Ripa MN, Boccia L. Assessment of nitrogen content in buffalo manure and land application costs. Journal of Agricultural Engineering 2012; 43(2): e13. https://doi.org/10.4081/jae.2012.18
Li Y, Chen Y, Wu J. Enhancement of methane production in anaerobic digestion process: A review. Appl Energy 2019; 240: 120-137. https://doi.org/10.1016/j.apenergy.2019.01.243
Hoyos-Sebá JJ, Arias NP, Salcedo-Mendoza J, Aristizábal-Marulanda V. Animal manure in the context of renewable energy and value-added products: A review. Chemical Engineering and Processing-Process Intensification 2024; 196: 109660. https://doi.org/10.1016/j.cep.2023.109660
Kougias PG, Angelidaki I. Biogas and its opportunities—A review. Front Environ Sci Eng 2018; 12-14. https://doi.org/10.1007/s11783-018-1037-8
Santangelo E, Calì M, Rossi E, Scalella R, La Mantia MC, Chiariotti A. Anaerobic co-digestion of tomato pomace and buffalo slurry. Procedia Environmental Science, Engineering and Management 2022; 9(4): 979-985.
Calì M, Rossi E, Scalella R, La Mantia MC, Santangelo E, Chiariotti A. Thermophilic anaerobic codigestion of tomato pomace and buffalo slurry. European Biomass Conference and Exhibition Proceedings 2022; 581-584.
Manfredini A, Chiariotti A, Santangelo E, Rossi E, Renzi G, Dell’Abat, MT. Assessing the Biological Value of Soluble Organic Fractions from Tomato Pomace Digestates. J Soil Sci Plant Nutr 2020; 21: 301-314. https://doi.org/10.1007/s42729-020-00361-4
APAT IRSA-CNR, 2003. Analytical methods for waters. Manual and Guideline 2003; vol III.
van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J Dairy Sci 1991; 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Martillotti F, Antongiovanni M, Rizzi L, Santi E, Bittante G. Analysis methods to evaluate animal feeds. CNR, IPRA, Rome, Italy 1987.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA. QIIME allows the analysis of high-throughput community sequencing data. Nature Methods 2010; 7(5): 335-6. https://doi.org/10.1038/nmeth.f.303
Coelho MC, Rodrigues AS, Teixeira JA, Pintado ME. Integral valorization of tomato by-products towards bioactive compounds recovery: Human health benefits. Food Chemistry 2023; 410: 135319. https://doi.org/10.1016/j.foodchem.2022.135319
Triolo JM, Sommer SG, Møller HB, Weisbjerg MR, Jiang XY. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresource Technology 2011; 102(20): 9395-9402. https://doi.org/10.1016/j.biortech.2011.07.026
Ziembińska-Buczyńska A, Banach A, Bacza T, Pieczykolan M. Diversity and variability of methanogens during the shift from mesophilic to thermophilic conditions while biogas production. World Journal of Microbiology and Biotechnology 2014; 30: 3047-3053. https://doi.org/10.1007/s11274-014-1731-z
Kabaivanova L, Petrova P, Hubenov V, Simeonov I. Biogas production potential of thermophilic anaerobic biodegradation of organic waste by a microbial consortium identified with metagenomics. Life 2022; 12(5): 702. https://doi.org/10.3390/life12050702
Ning X, Shixun L, Fengxue X, Jie Z, Honghua J, Jiming X, Min J, Weilian, D. Biomethane Production From Lignocellulose: Biomass Recalcitrance and Its Impacts on Anaerobic Digestion. Front Bioeng Biotechnol 2019; 7: 191. https://doi.org/10.3389/fbioe.2019.00191
Zhu N, Gao J, Liang D, Zhu Y, Li B, Jin H. Thermal pretreatment enhances the degradation and humification of lignocellulose by stimulating thermophilic bacteria during dairy manure composting. Bioresource Technology 2021; 319: 124-149. https://doi.org/10.1016/j.biortech.2020.124149
Tu M, Pa X, Saddler JN. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J Agric Food Chem 2009; 57: 7771-7778. https://doi.org/10.1021/jf901031m
Cazaudehore G, Monlau F, Gassie C, Lallement A, Guyoneaud R. Methane production and active microbial communities during anaerobic digestion of three commercial biodegradable coffee capsules under mesophilic and thermophilic conditions. Science of The Total Environment 2021; 784: 146972. https://doi.org/10.1016/j.scitotenv.2021.146972
Carotenuto C, Guarino G, Morrone B, Minale M. Temperature and pH effect on methane production from buffalo manure anaerobic Digestion. Int J Heat Technol 2016; 34: S425-S429. https://doi.org/10.18280/ijht.34S233
Zhang C, Su H, Baeyens J, Tan T. Reviewing the anaerobic digestion of food waste for biogas production, Renew. Sustain. Energy Rev 2014; 38: 383-392. https://doi.org/10.1016/j.rser.2014.05.038
Yang L, Huang Y, Zhao M, Huang Z, Miao H, Xu Z, Ruan W. Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: Effect of pH adjustment. Int Biodeterior Biodegrad 2015; 105: 153-159. https://doi.org/10.1016/j.ibiod.2015.09.005
Almeida PV, Rodrigues RP, Gaspar MC, Braga ME, Quina MJ. Integrated management of residues from tomato production: Recovery of value-added compounds and biogas production in the biorefinery context. Journal of Environmental Management 2021; 299: 113505. https://doi.org/10.1016/j.jenvman.2021.113505
Saghouri M, Mansoori Y, Rohani A, Khodaparast MHH, Sheikhdavoodi MJ. Modelling and evaluation of anaerobic digestion process of tomato processing wastes for biogas generation. J Mater Cycles Waste Manag 2018; 20: 561-567. https://doi.org/10.1007/s10163-017-0622-4
Weiland P. Biogas production: current state and perspectives. Applied Microbiology and Biotechnology 2010; 85: 849-860. https://doi.org/10.1007/s00253-009-2246-7
Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R. Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresource Technology 2011; 102(18): 8582-8588. https://doi.org/10.1016/j.biortech.2011.03.102
Satpathy P, Steinigeweg S, Siefert E, Cypionka H. Effect of lactate and starter inoculum on biogas production from fresh maize and maize silage. Advances in Microbiology 2017; 7(5): 358-76. https://doi.org/10.4236/aim.2017.75030
Daeschel MA, Andersson RE, Fleming HP. Microbial ecology of fermenting plant materials. FEMS Microbiol Lett 1987; 46: 357-367. https://doi.org/10.1111/j.1574-6968.1987.tb02472.x
Holliger C, Alves M, Andrade D, Angelidaki I, Astals S, Baier U, et al. Towards a standardization of biomethane potential tests. Water Sci Technol 2016; 74: 2515-2522. https://doi.org/10.2166/wst.2016.336
Bernardet JF, Bowman JP. The genus flavobacterium. The prokaryotes 2006; 7: 481-531. https://doi.org/10.1007/0-387-30747-8_17
Slepechy RA, Hemphill HE. The genes Bacillus- non medical. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K (ed.), The Procaryotes, Springer, New York, NY 1992; II: 1663-1896.
Wiegel J, Tanner RA, Rainey FA. An introduction to the family Clostridiaceae. Prokaryotes 2006; 4: 654-78. https://doi.org/10.1007/0-387-30744-3_20
Abendroth C, Vilanova C, Günther T, Luschnig O, Porcar M. Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany. Biotechnology Biofuels 2015; 8(87). https://doi.org/10.1186/s13068-015-0271-6
Bassani I, Kougias PG, Treu L, Angelidaki I. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions. Environmental Science & Technology 2015; 49(20): 12585-12593. https://doi.org/10.1021/acs.est.5b03451
Duda R M, da Silva Vantini J Martins SL, de Mello Varani A, Lemons MVF, Ferro MIT, et al. A balanced microbiota efficiently produces methane in a novel high-rate horizontal anaerobic reactor for the treatment of swine wastewater. Biores Technol 2015; 197: 152-160. https://doi.org/10.1016/j.biortech.2015.08.004
Goux X, Calusinska M, Lemaigre S, Marynowska M, Klocke M, Udelhoven T, Benizri E, Delfosse P. Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery. Biotechnology for Biofuels 2015; 8: 1-8. https://doi.org/10.1186/s13068-015-0309-9
Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME Journal 2009; 3(6): 700-714. https://doi.org/10.1038/ismej.2009.2
St-Pierre B, Wright AD. Comparative metagenomic analysis of bacterial populations in three full-scale mesophilic anaerobic manure digesters. Applied Microbiology and Biotechnology 2014; 98: 2709-2717. https://doi.org/10.1007/s00253-013-5220-3
Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnology for Biofuels 2016; 9: 1-7. https://doi.org/10.1186/s13068-016-0441-1
Maus I, Tubbesing T, Wibberg D, Heyer R, Hassa J, Tomazetto G, Huang L, Bunk B, Spröer C, Benndorf D, et al. The Role of Petrimonas Mucosa ING2-E5AT in Mesophilic Biogas Reactor Systems as Deduced from Multiomics Analyses. Microorganisms 2020; 8(12): 2024. https://doi.org/10.3390/microorganisms8122024
Chen L, Xu D, Liang J, Zhang Y, Fang W, Zhang P, Zhang G. New insight into effects of waste scrap iron on sludge anaerobic digestion: Performances, microbial community, and potential metabolic functions. Journal of Water Process Engineering 2023; 55: 104230. https://doi.org/10.1016/j.jwpe.2023.104230
Nabi M, Gao, Liang J, Cai Y, Zhang P. Combining high-pressure homogenization with free nitrous acid pretreatment to improve anaerobic digestion of sewage sludge. J Environ Manag 2022; 318: 115635. https://doi.org/10.1016/j.jenvman.2022.115635
Wang J, Liu X, He J, Cheng G, Xu J, Lu M, Shangguan Y, Zhang A. Mechanism of dielectric barrier discharge plasma technology to improve the quantity of short-chain fatty acids in anaerobic fermentation of waste active sludge Front. Microbiol 2022; 13: Article 963260. https://doi.org/10.3389/fmicb.2022.963260
Shiratori H, Ohiwa H, Ikeno H, et al. Lutispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming bacterium isolated from a thermophilic methanogenic bioreactor digesting municipal solid wastes. Int J Syst Evol Microbiol 2008; 58: 964-969. https://doi.org/10.1099/ijs.0.65490-0
Ecem Öner B, Akyol Ç, Bozan M, Ince O, Aydin S, Ince B. Bioaugmentation with Clostridium thermocellum to enhance the anaerobic biodegradation of lignocellulosic agricultural residues. Bioresour Technol 2018; 249: 620-625. https://doi.org/10.1016/j.biortech.2017.10.040
Song C, Li W, Cai F, Liu G, Chen C. Anaerobic and microaerobic pretreatment for improving methane production from paper waste in anaerobic digestion. Frontiers in Microbiology 2021; 12: 688290. https://doi.org/10.3389/fmicb.2021.688290
Rettenmaier R, Schneider M, Munk B, Lebuhn M, Jünemann S, Sczyrba A, Maus I, Zverlov V, Liebl W. Importance of Defluviitalea raffinosedens for hydrolytic biomass degradation in co-culture with Hungateiclostridium thermocellum. Microorganisms 2020; 8(6): 915. https://doi.org/10.3390/microorganisms8060915
Zhang J, Loh KC, Lee J, Wang CH, Dai Y, Wah Tong Y. Three-stage anaerobic co-digestion of food waste and horse manure. Scientific Reports 2017; 7(1): 1269. https://doi.org/10.1038/s41598-017-01408-w
Sun L, Pope PB, Eijsink VG, Schnürer A. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microbial Biotechnology 2015; 8(5): 815-27. https://doi.org/10.1111/1751-7915.12298
Moset V, Poulsen M, Wahid R, Højberg O, Møller HB. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microbial Biotechnology 2015; 8(5): 787-800. https://doi.org/10.1111/1751-7915.12271
Maus I, Tubbesing T, Wibberg D, Heyer R, Hassa J, Tomazetto G, Huang L, Bunk B, Spröer C, Benndorf D, et al. The Role of Petrimonas Mucosa ING2-E5AT in Mesophilic Biogas Reactor Systems as Deduced from Multiomics Analyses. Microorganisms 2020; 8(12): 2024. https://doi.org/10.3390/microorganisms8122024
Müller B, Sun L, Westerholm M, Schnürer A. Bacterial Community Composition and Fhs Profiles of Low- and High-Ammonia Biogas Digesters Reveal Novel Syntrophic Acetate-Oxidising Bacteria. Biotechnol Biofuels 2016; 9: 48. https://doi.org/10.1186/s13068-016-0454-9
Li X, Li Q, He J, Zhang YF, Zhu NM. Application of activated carbon to enhance biogas production rate of Flammulina velutipes residues with composting pretreatment. Waste and Biomass Valorization 2021; 12: 823-831. https://doi.org/10.1007/s12649-020-01039-9
Pan X, Angelidaki I, Alvarado-Morales M, Liu H, Liu Y, Huang X, Zhu G. Methane production from a formate, acetate, and H2/CO2; focusing on kinetics and microbial characterization. Bioresource Technology 2016; 218: 796-806. https://doi.org/10.1016/j.biortech.2016.07.032
Karakashev D, Batstone DJ, Angelidaki I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Applied and Environmental Microbiology 2005; 71(1): 331-338. https://doi.org/10.1128/AEM.71.1.331-338.2005
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work