Monoclonal Antibodies Specific to Water Buffalo (Bubalus bubalis) Myxovirus Resistance Protein_1

Authors

  • Dam Van Phai Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trauquy town, Gia Lam district, Hanoi City, Vietnam
  • Van Laere Anne-Sophie Department of Pathology, Faculty of Veterinary Medicine, Liège University, Sart Tilman B43, 4000 Liège, Belgium
  • Dubois Axel Embryology Unit, Faculty of Veterinary Medicine, Liège University, Sart Tilman B43, 4000 Liège, Belgium
  • Bui Tran Anh Dao Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trauquy town, Gia Lam district, Hanoi City, Vietnam
  • Desmecht Daniel Department of Pathology, Faculty of Veterinary Medicine, Liège University, Sart Tilman B43, 4000 Liège, Belgium

DOI:

https://doi.org/10.6000/1927-520X.2020.09.03

Keywords:

Water buffalo, MX, antibody, biomarker, viral infection.

Abstract

Recombinant bubaline (Bubalus bubalis) myxovirus resistance protein 1 (bbMx1) was successfully expressed by an Escherichia coli expression system. After immunization and cell fusion, a set of ten mouse hybridomas producing mAbs to bbMx1 was established. The ten corresponding mAbs were further characterized using indirect ELISA, western blot analysis and immunocytofluorescent staining. Eight mAbs, designated 11C7, RD5, NF3, 9D1, FD4, PE6, 11A7 and 10F5, displayed binding abilities and specificity in the three formats. Moreover, combining NF3 (for capture) with RD5 (for detection), 9D1 with RD5, FD4 with 11C7 or PE6 with 11C7 generated a strong signal in a prototype sandwich-ELISA. The results suggest that the mAbs developed and characterized here provide an excellent starting point for developing diagnostic tools aimed at detecting viral infections in the water buffalo, whatever using immunoblotting, immunocytostaining or sandwich-ELISA.

References

Belardelli F. Role of Interferon and other cytokines in the regulation of the immune response. APMIS 1995; 103: 161-179. https://doi.org/10.1111/j.1699-0463.1995.tb01092.x DOI: https://doi.org/10.1111/j.1699-0463.1995.tb01092.x

Taylor JL, Grossberg SE. Recent progress in Interferon research: molecular mechanisms of regulation, action, and virus circumvention. Virus Res 1990; 15: 1-26. https://doi.org/10.1016/0168-1702(90)90010-9 DOI: https://doi.org/10.1016/0168-1702(90)90010-9

Verhelst J, Hulpiau P, Saelens X. Mx proteins: antiviral gatekeepers that restrain the uninvited. Microbiol Mol Biol Rev 2013; 77: 551-66. https://doi.org/10.1128/MMBR.00024-13 DOI: https://doi.org/10.1128/MMBR.00024-13

Bertolotto A, Gilli F, Sala A, Audano L, et al. Evaluation of bioavailability of three types of IFNa in multiple sclerosis patients by a new quantitative-competitive-PCR method for MxA quantification. J Immunol Methods 2001; 256: 141-152. https://doi.org/10.1016/S0022-1759(01)00434-3 DOI: https://doi.org/10.1016/S0022-1759(01)00434-3

Asano A, Jin HK, Watanabe T. Mouse Mx2 gene: organization, mRNA expression and the role of the interferon-response promoter in its regulation. Gene 2003; 306: 105-113. https://doi.org/10.1016/S0378-1119(03)00428-1 DOI: https://doi.org/10.1016/S0378-1119(03)00428-1

Gérardin JA, Baise EA, Pire GA, Leroy MP, Desmecht DJ. Genomic structure, organisation, and promoter analysis of the bovine (Bos taurus) Mx1 gene. Gene 2004; 326: 67-75. https://doi.org/10.1016/j.gene.2003.10.006 DOI: https://doi.org/10.1016/j.gene.2003.10.006

Yamada K, Nakatsu Y, Onogi A, et al. Structural and functional analysis of the bovine Mx1 promoter. J Interferon Cytokine Res 2009; 29: 217-226. https://doi.org/10.1089/jir.2008.0069 DOI: https://doi.org/10.1089/jir.2008.0069

Ronni T, Melen K, Malygin A, Julkunen I. Control of IFN-inducible MxA gene expression in human cells. J Immunol 1993; 150: 1715-1718. DOI: https://doi.org/10.4049/jimmunol.150.5.1715

von Wussow P, Jakschies D, Hochkeppel KH, Fibisch C, Penner L, Deicher H. The human intracellular Mx homologous protein is specifically induced by type I Interferons. Eur J Immunol 1990; 20: 2015-2019. https://doi.org/10.1002/eji.1830200920 DOI: https://doi.org/10.1002/eji.1830200920

Wallach D, Schatner A, Merlin G, Hahn T, Levin S, Revel M. Assay of an interferon-induced enzyme in white blood cells as a diagnostic aid in viral diseases. Lancet 1981; 2: 497-499. https://doi.org/10.1016/S0140-6736(81)90883-7 DOI: https://doi.org/10.1016/S0140-6736(81)90883-7

Chieux V, Hober D, Harvey J, et al. The MxA protein levels in whole blood lysates of patients with various viral infections. J Virol Methods 1998; 70: 183-191. https://doi.org/10.1016/S0166-0934(97)00177-8 DOI: https://doi.org/10.1016/S0166-0934(97)00177-8

Forster J, Schweizer M, Schumacher RF, Kaufmehl K, Lob S. MxA protein in infants and children with respiratory tract infection. Acta Paediatr 1996; 85: 163-167. https://doi.org/10.1111/j.1651-2227.1996.tb13985.x DOI: https://doi.org/10.1111/j.1651-2227.1996.tb13985.x

Haller O, Frese M, Kochs G. Mx proteins: mediators of innate resistance to RNA viruses. Rev Sci Tech 1998; 17: 220-230. https://doi.org/10.20506/rst.17.1.1084 DOI: https://doi.org/10.20506/rst.17.1.1084

Halminen M, Ilonen J, Julkunen I, Ruuskanen O, Simell O, Mäkelä MJ. Expression of MxA protein in blood lymphocytes discriminates between viral and bacterial infections in febrile children. Pediatr Res 1997; 41: 647-650. https://doi.org/10.1203/00006450-199705000-00008 DOI: https://doi.org/10.1203/00006450-199705000-00008

Nakabayashi M, Adachi Y, Itazawa T, et al. MxA-based recognition of viral illness in febrile children by a whole blood assay. Pediatr Res 2006; 60: 770-774. https://doi.org/10.1203/01.pdr.0000246098.65888.5b DOI: https://doi.org/10.1203/01.pdr.0000246098.65888.5b

Roers A, Hochkeppel HK, Horisberger MA, Hovanessian A, Haller O. MxA gene expression after live virus vaccination: a sensitive marker for endogenous type I interferon. J Infect Dis 1994; 169: 807-813. https://doi.org/10.1093/infdis/169.4.807 DOI: https://doi.org/10.1093/infdis/169.4.807

Antonelli G, Simeoni E, Turriziani O, et al. Correlation of interferon-induced expression of MxA mRNA in peripheral blood mononuclear cells with the response of patients with chronic active hepatitis C patient to IFN-alpha therapy. J Interferon Cytokine Res 1999; 19: 243-251. https://doi.org/10.1089/107999099314171 DOI: https://doi.org/10.1089/107999099314171

Juntunen E, Salminen T, Talha SM, et al. Lateral flow immunoassay with upconverting nanoparticle-based detection for indirect measurement of interferon response by the level of MxA. J Med Virol 2017; 89: 598-605. https://doi.org/10.1002/jmv.24689 DOI: https://doi.org/10.1002/jmv.24689

Cockrill WR. The water buffalo. Rome: Animal Production and Health Series No. 4. Food and Agriculture Organization of the United Nations 1977.

Food and Agriculture Organization of the United Nations (FAO). http: //www.fao.org/faostat/en/#home [cited 2019 November 27].

Nanda AS, Nakao T. Role of buffalo in the socio-economic development of rural Asia: Current status and future prospectus. Anim Sci J 2003; 74: 443-455. https://doi.org/10.1046/j.1344-3941.2003.00138.x DOI: https://doi.org/10.1046/j.1344-3941.2003.00138.x

Alsook M, Gabriel A, Piret J, et al. Tissues from equine cadaver ligaments up to 72 hours of post-mortem: A promising reservoir of stem cells. Stem Cell Research & Therapy 2015; 6(1): 253. https://doi.org/10.1186/s13287-015-0250-7 DOI: https://doi.org/10.1186/s13287-015-0250-7

Toivonen L, Schuez-Havupalo L, Rulli M, Ilonen J, et al. Blood MxA protein as a marker for respiratory virus infections in young children. J Clin Virol 2015; 62: 8-13. https://doi.org/10.1016/j.jcv.2014.11.018 DOI: https://doi.org/10.1016/j.jcv.2014.11.018

Manuja B, Manuja A, Singh R. Globalization and Livestock Biosecurity. Agric Res 2014; 3(1): 22-31. https://doi.org/10.1007/s40003-014-0097-7 DOI: https://doi.org/10.1007/s40003-014-0097-7

Smith P, Luthi N, Huachun L, et al. Movement Pathways and Market Chains of Large Ruminants in the Greater Mekong Sub-region. World Organisation for Animal Health, Bangkok, Thailand 2015.

Jakschies D, Armbrust A, Clare KU, et al. Significant differences of the MxA-protein expression in human PBL of patients with viral and bacterial infections. J Interferon Res 1994; 14: S124.

Zav'yalov VP, Hämäläinen-Laanaya H, Korpela TK, Wahlroos T. Interferon-Inducible Myxovirus Resistance Proteins: Potential Biomarkers for Differentiating Viral from Bacterial Infections. Clin Chem 2019; 65(6): 739-750. https://doi.org/10.1373/clinchem.2018.292391 DOI: https://doi.org/10.1373/clinchem.2018.292391

Hanack K, Messerschmidt K, Listek M. Antibodies and Selection of Monoclonal Antibodies. In: Böldicke T. (eds) Protein Targeting Compounds. Advances in Experimental Medicine and Biology. Springer, Cham 2016; Vol. 917. https://doi.org/10.1007/978-3-319-32805-8_2 DOI: https://doi.org/10.1007/978-3-319-32805-8_2

Downloads

Published

2020-02-20

How to Cite

Phai, D. V., Anne-Sophie, V. L., Axel, D., Dao, B. T. A., & Daniel, D. (2020). Monoclonal Antibodies Specific to Water Buffalo (Bubalus bubalis) Myxovirus Resistance Protein_1. Journal of Buffalo Science, 9, 13–23. https://doi.org/10.6000/1927-520X.2020.09.03

Issue

Section

Articles