A New Model for the Full Inclusion of Precipitation Reactions in the General Ionic Equilibrium Framework of Homogeneous Solutions Based on the Fraction of Species Concept in Heterogeneous Systems

Authors

  • Eduardo Rodríguez de San Miguel Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria 04510 CDMX, México

Keywords:

Distribution fraction diagram, predominance zone diagram, precipitation reactions, side-reaction coefficients, modeling precipitation reactions.

Abstract

This study aims at extending the general methodology for the study of predominance and reactivity of ionic homogeneous solutions to precipitation reactions. This extension was satisfactorily formulated by the definition of the fraction of species concept in heterogeneous systems for the first time. An easy form to fully integrate the ion product concept with other descriptions of homogeneous ionic reactions, to obtain predominance zone diagrams (PDZ), to enrich the use logarithmic relative diagrams, to generate continuous equations from titration curves, and to generalize side-reaction coefficients to heterogeneous systems using easy-to-compute algorithms of calculation is shown.

The new representation was applied in a study case exemplified by the hydrolysis of copper (II) in the absence and the presence of complexing ligands considering soluble and insoluble species of the metal ion. The results perfectly compare to those obtained by established numerical and graphical methods of analysis of solution equilibria showing the equivalence among the different descriptions.

Pre-nucleation clusters (PNCs) theory of precipitation reactions was used as a mean to interpret the theoretical implication that this view engendered.

References

Eckschlager K, Danzer K. Information theory in Analytical Chemistry. New York: John Wiley & Sons Inc.; 1994.

Mitra S, Ed. Sample Preparation Techniques in Analytical Chemistry. New Jersey: John Wiley & Sons, Inc.; 2003. https://doi.org/10.1002/0471457817

Charlot G. Curso de Química Analítica General, Tomo 1, V. Pérez S (Traductor). Barcelona: Masson SA; 1980.

Högfeldt E. Graphic presentation of equilibrium data. In Kolthoff IM, and Elving, PJ, editors. Treatise on Analytical Chemistry Part I Volume 2. Hoboken: John Wiley & Sons Inc 1979; p. 1-61.

Elenkova N G. General treatment of conjugate acid-base, redox and complexation equilibria. Talanta 1980; 27: 699-704. https://doi.org/10.1016/0039-9140(80)80161-5

Vale J, Fernandez-Pereira C, Alcalde M. General treatment of aqueous ionic equilibria using predominance diagrams. J Chem Educ 1993; 70: 790-5. https://doi.org/10.1021/ed070p790

Burgot J L. Ionic Equilibria in Analytical Chemistry. New York: Springer Science+Business Media; 2012. https://doi.org/10.1007/978-1-4419-8382-4

Butler J N. Ionic equilibrium: solubility and pH calculations. New York: Wiley & Sons Inc.; 1998.

Guenther WB. Unified Equilibrium Calculations. New York: Wiley-Interscience; 1991.

de Levie R. How to use Excell in Analytical Chemistry and in General Scientific Data Analysis. Cambridge: Cambridge University Press; 2004.

Skoog DA, Holler FJ. Mathcad Applications for Analytical Chemistry. Philadelphia: Saunders College Publishing; 1994.

Whiteley RV. Equilibrium in Analytical Chemistry using Maple. An emphasis on Ionic Equilibrium. Part 1. Frederiksberg: Ventus Publishing ApS; 2013.

Freiser H. Concepts & Calculations in Analytical Chemistry A Spreadsheet Approach. , Boca Ratón: CRC Press; 1992.

Rojas-Hernández A, Ramírez M T, Ibáñez J G, González I. Relationship of multidimensional predominance-zone diagrams with multiconditional constants for complexation equilibria. Anal Chim Acta 1991; 246: 435-42. https://doi.org/10.1016/S0003-2670(00)80983-6

Rojas-Hernández A, Ramírez M T, González I, Ibáñez J G. Multi-dimensional predominance-zone diagrams for polynuclear chemical species. Anal Chim Acta 1992; 259: 95-104. https://doi.org/10.1016/0003-2670(92)85080-P

Rojas-Hernández A, Ramírez M T, González I. Predominance-zone diagrams in solution chemistry Dismutation processes in two-component systems (M-L). J Chem Educ 1995; 72: 1099-1105. https://doi.org/10.1021/ed072p1099

Enke C G. The art and science of chemical analysis. Hoboken: Wiley; 2000.

Fernández Pereira C, Alcalde M, Villegas R, Vale J. Predominance diagrams, a useful tool for the correlation of the precipitation-solubility equilibrium with other ionic equilibria. J Chem Educ 2007; 84: 520-5. https://doi.org/10.1021/ed084p520

Schwarzenbach G. Complexometric Titrations. London: Methuen and Co. Ltd; 1957.

Ringbom A. Complexation in Analytical Chemistry A guide for the critical selection of analytical methods based on complexation reactions. New York: Interscience (Wiley); 1963.

Trémillon B. Reactions in solutions, an applied analytical approach. Chichester: John Wiley & Sons; 1997.

Silva M, Barbosa J. Equilibrios iónicos y sus aplicaciones analíticas. Madrid: Editorial Síntesis; 2004.

Scholz F, Kahlert H. The calculation of the solubility of metal hydroxides, oxide-hydroxides, and oxides, and their visualisation in logarithmic diagrams. ChemTexts 2015; 1: 7. https://doi.org/10.1007/s40828-015-0006-0

Kahlert H, Scholz F. Acid-Base Diagrams. Heidelberg: Springer; 2013.

Vicente Pérez S. Química Analítica. Madrid: Universidad Nacional de Educación a Distancia; 2001.

Denbigh K. The Principles of Chemical Equilibrium with Applications in Chemistry and Chemical Engineering. New York: Cambridge University Press; 1957.

Jin G, Donohue M D. An Equation of State for Electrolyte Solutions. 3. Aqueous Solutions Containing Multiple Salts. Ind Eng Chem Res 1991; 30: 240-8. https://doi.org/10.1021/ie00049a037

Bader MSH. Thermodynamics of ions precipitation in mixed-solvent mixtures. J Hazard Mater 1999; B69: 319-34.

Gebauer D, Kellermeier M, Gale J D, Bergström L, Cölfen H. Pre-nucleation clusters as solute precursors in crystallization. Chem Soc Rev 2014; 43: 2348-71. https://doi.org/10.1039/C3CS60451A

Demichelis R, Raiteri P, Gale JD. Structure of hydrated calcium carbonates: A first-principles study. J Cryst Growth 2013; 401: 33-7. https://doi.org/10.1016/j.jcrysgro.2013.10.064

Demichelis R, Raiteri, P J, Gale D, Quigley D, Gebauer D. Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat Commun 2011; 2: 590. https://doi.org/10.1038/ncomms1604

Burgos-Cara A, Putnis CV, Rodriguez-Navarro C, Ruiz-Agudo E. Hydration Effects on the Stability of Calcium Carbonate Pre-Nucleation Species. Minerals 2017; 7: 126. https://doi.org/10.3390/min7070126

Puigdomenech I. Make Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA) software. Stockholm: Royal Institute of Technology (KTH), School of Chemical Science and Engineering; 2015.

Eriksson G. An algorithm for the computation of aqueous multicomponent, multiphase equilibria. Anal Chim Acta 1979; 112: 375-83. https://doi.org/10.1016/S0003-2670(01)85035-2

Ingri N, Kakolowicz W, Sillén L G, Warnqvist B. High-speed computers as a supplement to graphical methods - V. HALTAFALL, a general program for calculating the composition of equilibrium mixtures. Talanta. 1967; 14: 1261-86. Errata: 1968; 15: xi-xii.

Aguilar San Juan M. Introducción a los Equilibrios Iónicos. Barcelona: Reverte; 1998.

de Levie R. Explicit Expressions of the General Form of the Titration Curve in Terms of Concentration. J Chem Educ 1993; 70: 209-17. https://doi.org/10.1021/ed070p209

Hage, DS, Carr JD. Analytical Chemistry and Quantitative Analysis. New Jersey: Prentice Hall; 2011.

Cataldo S, Gianguzza A, Pettignano A, Piazzese D, Sammartano S. Complex Formation of Copper (II) and Cadmium (II) with Pectin and Polygalacturonic Acid in Aqueous Solution An ISE-H+ and ISE-Me2+ Electrochemical Study. Int J Electrochem Sci 2012; 7: 6722-37.

Elder J F. Complexation side reactions involving trace metals in natural water systems. Limnol Oceanogr 1975; 20: 96-102. https://doi.org/10.4319/lo.1975.20.1.0096

Downloads

Published

2018-12-13

How to Cite

Miguel, E. R. de S. . (2018). A New Model for the Full Inclusion of Precipitation Reactions in the General Ionic Equilibrium Framework of Homogeneous Solutions Based on the Fraction of Species Concept in Heterogeneous Systems. Journal of Applied Solution Chemistry and Modeling, 7, 39–51. Retrieved from http://lifescienceglobalca.com/index.php/JASCM/article/view/7755

Issue

Section

General Articles